褐飛虱翅型分化分子機(jī)理研究
本文選題:褐飛虱 + 翅型分化; 參考:《浙江大學(xué)》2015年博士論文
【摘要】:在不同環(huán)境條件下,基因型相同生物的外部形態(tài)和內(nèi)部組織結(jié)構(gòu)可能表現(xiàn)出顯著的差異,這種發(fā)育可塑性是生物在長期進(jìn)化過程中為適應(yīng)不斷變化的生態(tài)環(huán)境而形成的一種極其重要的生存策略,褐飛虱的長短翅分化就是一個(gè)很好的例子。長翅型褐飛虱具飛行能力,利于種群擴(kuò)散,而短翅型褐飛虱喪失飛行能力,但具有較高的生殖力,更利于種群增長。半個(gè)世紀(jì)以來,雖然眾多學(xué)者以蚜蟲、飛虱、蟋蟀為模式,對昆蟲翅多型進(jìn)行了廣泛的研究,也積累了大量的資料,但尚未揭示翅型分化的分子機(jī)制。本論文針對這一科學(xué)問題,以褐飛虱為模型,從基因組和轉(zhuǎn)錄組數(shù)據(jù)分析入手,經(jīng)過系統(tǒng)研究,揭示了其翅型分化的分子機(jī)理。所取得的主要研究結(jié)果如下: 1.分析了褐飛虱的全基因組序列和翅型分化相關(guān)的基因。用全基因組鳥槍法和fosmid文庫結(jié)合的方法做測序拼接,最終得到了1.14Gbp的褐飛虱基因組草圖,contig N50大小為24.2kbp, scaffold N50大小為356.6kbp,共注釋了27,571個(gè)CDS序列;蚪M序列為進(jìn)一步研究褐飛虱的生物學(xué)機(jī)理提供了必要的序列信息基礎(chǔ)。進(jìn)一步分析了基因組中與翅型分化相關(guān)的基因,包括營養(yǎng)通路基因、保幼激素合成相關(guān)基因、翅發(fā)育網(wǎng)絡(luò)基因、遷飛及生物鐘相關(guān)的基因,表明TOR信號(hào)通路參與了褐飛虱的生殖和激素合成調(diào)控;胰島素信號(hào)轉(zhuǎn)導(dǎo)通路中有2個(gè)受體基因存在;翅發(fā)育網(wǎng)絡(luò)基因在褐飛虱中是保守的,這些基因在長短翅褐飛虱若蟲中的表達(dá)量差異顯著,干擾這些基因能引起翅發(fā)育不正常;遷飛及生物鐘相關(guān)基因在褐飛虱中同樣存在,它對褐飛虱遷飛過程中時(shí)間補(bǔ)償以及定向機(jī)制有重要意義;基因組DNA甲基化與不同翅型褐飛虱間的差異也有一定聯(lián)系。 2.分析了褐飛虱轉(zhuǎn)錄組并比較了長短翅表達(dá)譜的差異。通過轉(zhuǎn)錄組分析,共得到了85,526條褐飛虱的轉(zhuǎn)錄組序列。對短翅型雌成蟲和長翅型雌成蟲做表達(dá)譜比較,發(fā)現(xiàn)了和翅型差異相關(guān)的基因。其中,與肌肉組成、能量代謝和生殖相關(guān)的基因表達(dá)差異顯著。同時(shí),基因組分析中與翅型分化相關(guān)的基因同樣能在轉(zhuǎn)錄組中找到表達(dá)信息,其中有8個(gè)基因在長短翅型比較中有顯著性差異表達(dá)。轉(zhuǎn)錄組的分析為褐飛虱翅型分化提供了大量有價(jià)值的信息。 3.揭示了褐飛虱翅型分化的分子機(jī)制。發(fā)現(xiàn)褐飛虱兩個(gè)胰島素受體基因(NllnRl和NlInR2)通過調(diào)控NIFOXO的活性分別控制了長翅型和短翅型的發(fā)育。NlInRl通過激活NlPI3K-NlAkt信號(hào)級(jí)聯(lián)誘導(dǎo)長翅型飛虱產(chǎn)生,如果這條通路被抑制,則誘導(dǎo)短翅型飛虱產(chǎn)生。與NlnR1相反,NlnR2是這條通路的負(fù)調(diào)控因子,抑制這條通路誘導(dǎo)長翅型飛虱產(chǎn)生。我們還發(fā)現(xiàn)一個(gè)分泌于腦的類胰島素多肽NlLP3激活了胰島素信號(hào)通路,從而誘導(dǎo)長翅型褐飛虱產(chǎn)生。同時(shí),在白背飛虱和灰飛虱中證明了胰島素信號(hào)通路在飛虱科中是控制翅型分化的普遍機(jī)理,這也是昆蟲中首次證明翅型分化分子基礎(chǔ)的研究。 4.比較了長短翅型飛行肌,分析了飛行肌的關(guān)鍵基因。通過轉(zhuǎn)錄組和蛋白質(zhì)譜的比較,篩選了與間接飛行肌相關(guān)的關(guān)鍵基因,如flightin和TpnC4基因等。其中,flightin對間接飛行肌的結(jié)構(gòu)和功能起到了決定性作用。鑒于flightin在非昆蟲的六足總綱和甲殼綱的物種中都是保守的,這為研究昆蟲翅的進(jìn)化提供了一絲線索,并為翅二型物種飛行肌分化提供重要的參考。
[Abstract]:Under different environmental conditions, there may be significant differences in the external morphology and internal structure of the same genotypic organisms. This developmental plasticity is an extremely important survival strategy for the organisms to adapt to the changing ecological environment in the long-term evolution process. The long and short wing differentiation of the brown planthopper is a good one. For example, the long winged brown planthopper has the ability to fly, which is conducive to the spread of the population, while the short winged brown planthopper loses its ability to fly, but has higher fertility and is more beneficial to the population growth. The molecular mechanism of wing type differentiation was not revealed. In this paper, the molecular mechanism of wing type differentiation was revealed by systematic study of the brown planthopper as a model and the analysis of genome and transcriptome data. The main results obtained are as follows:
1. the whole genome sequence of the brown planthopper and the genes related to the wing type differentiation were analyzed. The whole genome shotgun method and fosmid library were combined to do sequencing and splicing. Finally, the genome sketch of 1.14Gbp was obtained. The size of contig N50 was 24.2kbp, scaffold N50 was 356.6kbp, and 27571 CDS sequences were annotated. Further studies on the biological mechanism of the brown planthopper provide the necessary sequence information basis. Further analysis of genes related to the wing differentiation in the genome, including nutrient pathway genes, juvenile hormone synthesis related genes, wing development network genes, migratory and biological clock related genes, indicates that the TOR signaling pathway participates in the growth of the brown planthopper. There are 2 receptor genes in the insulin signal transduction pathway; the wing development network gene is conservative in the brown planthopper, and these genes differ significantly in the nymph of long winged brown planthopper, and the interference of these genes can cause abnormal wing development; the migratory and biological clock related genes are the same in the brown planthopper. It is of great significance to the time compensation and orientation mechanism during the migration of the brown planthopper, and the genomic DNA methylation is also related to the difference between the different winged brown planthopper.
2. the transcriptional groups of the brown planthopper were analyzed and the differences in the expression profiles of long and short wings were compared. Through the analysis of the transcriptional group, a total of 85526 transcriptional sequences of the brown planthopper were obtained. The genes related to the difference of the wing type were found for the short winged female adult and the long winged female adult. At the same time, genes associated with wing differentiation in genomic analysis can also find expression information in the transcriptional group, of which 8 genes are significantly different in the long and short wing comparison. The analysis of the transcriptional group provides a large number of valuable information for the wing type differentiation of the brown planthopper.
3. the molecular mechanism of wing type differentiation of brown planthopper was revealed. Two insulin receptor genes (NllnRl and NlInR2) of the brown planthopper (NllnRl and NlInR2) controlled the development of long winged and short wing type.NlInRl by regulating the activity of the long wing type and the short wing type, inducing the production of long winged planthopper by activating the NlPI3K-NlAkt signal cascade. If this pathway was suppressed, it induced the short wing type flying. In contrast to NlnR1, NlnR2 is a negative regulator of this pathway, which inhibits the pathway to induce long winged planthoppers. We also found that an insulin like polypeptide, NlLP3 secreted in the brain, activates the insulin signaling pathway to induce long winged brown planthopper, and the insulin signal is demonstrated in white back and grey planthopper. The pathway is a universal mechanism for controlling wing type differentiation in the family hopper. This is also the first study of the molecular basis of wing differentiation in insects.
4. compared with the long and short wing type flying muscles, the key genes of the flying muscles were analyzed. Through the comparison of the transcriptional and protein mass spectra, the key genes related to the indirect flying muscles, such as flightin and TpnC4 genes, were screened. Among them, flightin played a decisive role in the structure and function of the indirect flying muscles. In view of the six FA in the non insect. All species of the class and crustacea are conservative, which provides a clue to the evolution of insect wings and provides an important reference for the differentiation of wing two species.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:S433
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂再萍;楊長舉;姚英娟;華紅霞;;外界環(huán)境對褐飛虱翅型分化的影響研究[J];湖北農(nóng)業(yè)科學(xué);2009年08期
2 解再宏;蘇品;廖曉蘭;;褐飛虱翅型分化影響因素及機(jī)制研究綜述[J];江西農(nóng)業(yè)學(xué)報(bào);2009年10期
3 鄒運(yùn)鼎,陳基誠,王士槐;稻株?duì)I養(yǎng)物質(zhì)與褐飛虱翅型分化的關(guān)系[J];昆蟲學(xué)報(bào);1982年02期
4 張?jiān)鋈?褐稻虱翅型分化的研究[J];昆蟲學(xué)報(bào);1983年03期
5 傅強(qiáng),陳偉,張志濤,唐曉清;稻褐飛虱雄蟲第二種鳴聲及其生殖競爭意義[J];昆蟲學(xué)報(bào);1997年03期
6 王群,杜建光,程遐年;褐飛虱翅型分化遺傳規(guī)律的研究[J];昆蟲學(xué)報(bào);1997年04期
7 王健,吳振廷,張一九,陳策香,徐貴華;外源激素對褐飛虱翅型分化的影響[J];昆蟲學(xué)報(bào);1998年04期
8 戴華國,吳曉毅,武淑文;褐飛虱體內(nèi)保幼激素滴度變化及其與翅型分化的關(guān)系[J];昆蟲學(xué)報(bào);2001年01期
9 解春蘭;李志毅;隋賀;潘衛(wèi)東;陳法軍;;褐飛虱成蟲體內(nèi)磁性物質(zhì)檢測[J];昆蟲學(xué)報(bào);2011年10期
10 歐俊;鄭思春;馮啟理;劉琳;;果蠅翅原基發(fā)育分化的主要過程及分子機(jī)理[J];昆蟲學(xué)報(bào);2013年08期
,本文編號(hào):1779113
本文鏈接:http://sikaile.net/kejilunwen/nykj/1779113.html