施加外源碳酸鈣和AM菌絲體對樟樹幼苗及土壤養(yǎng)分的影響
本文選題:喀斯特 + AM菌絲體; 參考:《貴州大學(xué)》2017年碩士論文
【摘要】:叢枝菌根(Arbuscular mycorrizal,AM)是植物與叢枝菌根真菌形成的共生體,這種共生體通過植物光合作用產(chǎn)生的碳水化合物供給根系外延菌絲并交換吸收土壤養(yǎng)分促進(jìn)植物生長,影響了植物-土壤的生態(tài)過程?λ固馗哜}生境中植物與菌根真菌的功能關(guān)系是許多研究者關(guān)注的重要問題。研究發(fā)現(xiàn),喀斯特適生植物能夠交替利用碳酸巖風(fēng)化產(chǎn)生的碳酸氫根離子作為碳源,AM真菌在這一過程扮演什么角色并影響了植物-土壤體系養(yǎng)分利用和轉(zhuǎn)化的研究還沒有涉及。這一問題的明確有助于闡明全球CO2濃度升高背景下喀斯特高鈣生境中AM對植物-土壤體系適應(yīng)性功能調(diào)控策略,對生態(tài)系統(tǒng)穩(wěn)定性具有重要意義。本試驗(yàn)采用隔室分離系統(tǒng),構(gòu)建外源碳酸鈣因素和菌絲隔網(wǎng)因素進(jìn)行雙因素試驗(yàn)。設(shè)計(jì)種植隔室組(HOST組)和菌絲測試隔室組(TEST組),每一個(gè)HOST組和TEST組由4個(gè)相同的隔室組成,共計(jì)8個(gè)隔室組成一個(gè)試驗(yàn)單元。在HOST組中種植香樟(Cirtnamomum camphora)幼苗,并接種叢枝菌根真菌幼套球囊霉(Glomus etunicatum),在TEST組中采用外源13C-碳酸鈣處理(C+處理,向TEST隔室中添加13C-碳酸鈣;C-處理,不向TEST隔室添加13C-碳酸鈣),HOST與TEST之間采用菌絲隔網(wǎng)處理(M+處理,采用20μm尼龍網(wǎng),隔離植物根系向相鄰隔室生長但菌絲可通過;M-處理,0.45μm尼龍網(wǎng),隔離菌絲與植物根系向相鄰隔室生長)。試驗(yàn)測定了香樟幼苗生長及土壤基質(zhì)性狀指標(biāo),主要結(jié)果如下:(1)對生長性狀而言,比較隔網(wǎng)處理對生長性狀影響的差異,C+處理下,M+隔網(wǎng)顯著提高了植株根總長、根表面積、根尖數(shù)、根分叉數(shù),同時(shí)提高了植株莖生物量和總生物量,但差異不顯著;C-處理下,M+隔網(wǎng)與M-隔網(wǎng)的樟樹幼苗根系性狀指標(biāo)無顯著性差異,但M+隔網(wǎng)對莖生物量和總生物量的提高達(dá)到顯著水平。比較外源碳酸鈣對生長性狀影響的差異,M+隔網(wǎng)下,C+處理顯著提高根尖數(shù)和分叉數(shù),同時(shí)莖和總生物量有所提高,但差異不顯著;M-隔網(wǎng)下,C+處理對樟樹幼苗根系性狀指標(biāo)和植株莖、總生物量均無顯著性影響。外源性碳酸鈣和隔網(wǎng)處理對樟樹幼苗苗高、地徑、葉面積均無顯著影響。(2)對植株養(yǎng)分而言,比較隔網(wǎng)處理對植株養(yǎng)分吸收的差異,C+處理下,M+隔網(wǎng)顯著增加了樟樹幼苗根中氮和鈣的攝取量,葉片氮和磷攝取量,以及植株總氮和總鈣攝取量;C-處理下,M+隔網(wǎng)顯著提高了葉片鈣、磷攝取量和植株總鈣攝取量。比較外源碳酸鈣對植株養(yǎng)分吸收的差異,M+隔網(wǎng)處理下,C+處理顯著提高了根的氮、鈣攝取量,莖的鈣攝取量,葉的氮攝取量,和植株總氮、總鈣攝取量;在M-隔網(wǎng)處理下,C+處理顯著提高樟樹幼苗莖的鈣攝取量和植株總鈣攝取量。(3)對土壤養(yǎng)分而言,比較隔網(wǎng)處理對土壤氮磷養(yǎng)分濃度的差異,C+處理下,M+隔網(wǎng)顯著增加了HOST室土壤中粒徑0.25 mm的堿解氮和全磷濃度,以及相鄰隔室(TEST室)土壤中粒徑2.00 mm的全氮濃度;C-處理下,M+隔網(wǎng)顯著降低了HOST室土壤中粒徑0.25-1.00 mm堿解氮濃度、但顯著提高了粒徑1.00-2.00 mm有效磷濃度,對TEST室土壤氮磷養(yǎng)分無影響。比較外源碳酸鈣對土壤氮磷養(yǎng)分的差異,在M+隔網(wǎng)下,C+處理顯著提高了HOST室粒徑0.25 mm的堿解氮濃度;在M-隔網(wǎng)處理下,C+處理顯著提高了HOST室粒徑0.25-1.00 mm全磷濃度和1.00-2.00 mm有效磷濃度,對TEST室磷濃度無顯著影響。對球囊霉素含量而言,比較隔網(wǎng)處理對球囊霉素的差異,C+處理下,M+隔網(wǎng)顯著增加了TEST室粒徑0.25-1.00 mm的總提取球囊霉素含量,但顯著降低了粒徑2.00 mm總提取球囊霉素含量;C-處理下,M+隔網(wǎng)顯著增加了HOST室中粒徑0.25 mm、0.25-1.00 mm易提取球囊霉素含量和粒徑0.25 mm、1.00-2.00 mm、2.00 mm總提取球囊霉素含量,并顯著提高了TEST室所有粒徑的總提取球囊霉素含量。比較外源碳酸鈣對球囊霉素含量的差異,在M+隔網(wǎng)下,C+處理顯著提高了HOST室中粒徑2.00 mm總球囊霉素含量和TEST室中粒徑2.00 mm易提取球囊霉素含量,顯著降低了TEST室中0.25-1.00 mm總提取球囊霉素含量;在M-隔網(wǎng)處理下,C+處理顯著提高了HOST室四個(gè)粒徑的易提取球囊霉素含量和TEST室粒徑0.25mm、2.00 mm總提取球囊霉素含量。(4)對δ13C值而言,比較隔網(wǎng)處理對δ13C值的差異,C+處理下,M+隔網(wǎng)處理增加了根、莖、葉中δ13C值,并增加了HOST室粒徑0.25 mm的δ13C值;C-處理下,M+隔網(wǎng)增加了根、葉中的δ13C值,對土壤中δ13C值影響不顯著。比較外源碳酸鈣對δ13C值的差異,在M+隔網(wǎng)處理下,C+處理顯著增加了TEST室四個(gè)粒徑的土壤δ13C值,并增加了HOST室粒徑0.25 mm、1.00-2.00 mm的δ13C值,植株根莖葉的δ13C值也有所提高;在M-隔網(wǎng)處理下,C+處理提高了植株根莖葉中的δ13C值。(5)總體上,施加外源碳酸鈣和AM菌絲體對植株和土壤δ13C值均有影響,但二者的交互作用對土壤和植株δ13C值的影響不顯著。外源碳酸鈣、AM菌絲體及二者的交互作用均能促進(jìn)植株對氮、鈣的攝取,提高土壤的氮磷養(yǎng)分,增加總球囊霉素在土壤中的含量。
[Abstract]:Arbuscular Mycorrizal (AM) is a symbiont formed between plant and arbuscular mycorrhizal fungi. This symbiont, through the carbohydrates produced by plant photosynthesis, supplies root epitaxial mycelia and exchanges and absorbs soil nutrients to promote plant growth and affects the ecological process of plant soil. Plants and mycorrhizae in high calcium habitats in Karst The functional relationship of fungi is an important issue for many researchers. It is found that the Karst growing plants can alternatively use carbon bicarbonate ions produced by carbonatite weathering as carbon sources. What role AM fungi play in this process and the study of nutrient use and transformation in plant soil systems have not been involved. It is helpful to clarify the adaptive function control strategy of AM on plant soil system in high calcium habitats in Karst under the background of global CO2 concentration, and it is of great significance to the stability of the ecosystem. Group HOST) and mycelium test compartment group (group TEST), each HOST group and TEST group were composed of 4 identical compartments and a total of 8 compartments composed of a test unit. In HOST group, camphor (Cirtnamomum camphora) seedlings were planted and inoculated with arbuscular mycorrhizal fungi (Glomus etunicatum), and exogenous 13C- calcium carbonate treatment was used in the TEST group. C+ treatment, adding 13C- calcium carbonate to the TEST compartment, C- treatment, not adding 13C- calcium carbonate to the TEST compartment, using mycelium isolation between HOST and TEST (M+ treatment, using 20 micron nylon net, isolating plant roots to adjacent compartments but mycelium can pass; M- treatment, 0.45 micron nylon net, isolated mycelia and plant roots to adjacent compartments). The growth and soil matrix properties of camphora camphora were measured and the main results were as follows: (1) the difference between the growth traits and growth traits was compared with the growth traits. Under the C+ treatment, M+ septum significantly improved root length, root surface area, root tip number, root fork number, and increased plant biomass and total biomass, but the difference between plant biomass and total biomass were improved. There was no significant difference in C- treatment. There was no significant difference between the root traits of the camphor seedlings of M+ septum and M- septum, but the increase of the biomass and total biomass of the stem was significantly higher than that of the M+ septum. Compared with the difference of the effects of exogenous calcium carbonate on the growth traits, the number of high root tips and forking numbers and the total biomass of the stems and the total biomass were significantly raised by C+ treatment. The difference was not significant. Under M- isolation, C+ treatment had no significant effect on the root traits of camphor seedlings and plant stem and total biomass. Exogenous calcium carbonate and net isolation had no significant influence on the seedling height, diameter and leaf area of camphor tree seedlings. (2) to compare the nutrient absorption difference between the plant and the plant nutrient, C+ treatment M+ septum significantly increased the uptake of nitrogen and calcium in the roots of camphor tree seedlings, nitrogen and phosphorus uptake of leaves, and total plant nitrogen and total calcium uptake. Under the C- treatment, M+ septum significantly improved leaf calcium, phosphorus uptake and total plant calcium uptake. The difference of nutrient uptake by exogenous calcium carbonate was compared. Under the M+ septum treatment, C+ treatment was significantly raised. Higher root nitrogen, calcium intake, calcium uptake of stem, leaf nitrogen uptake, total nitrogen and total calcium uptake. Under M- isolation, C+ treatment significantly improved the calcium uptake and total calcium uptake of the stem of camphor tree seedlings. (3) for soil nutrients, the difference of nitrogen and phosphorus concentration in soil was compared with the soil nutrients. Under the C+ treatment, M+ isolation was shown. The concentration of alkali hydrolysable nitrogen and total phosphorus in the soil of HOST room was increased by 0.25 mm, as well as the total nitrogen concentration of 2 mm in the adjacent compartment (TEST chamber). Under C- treatment, M+ septum significantly reduced the concentration of 0.25-1.00 mm alkali hydrolysable nitrogen in the HOST room soil, but significantly increased the concentration of the grain diameter 1.00-2.00 mm, and the nitrogen and phosphorus nutrients in the TEST chamber soil. The difference of nitrogen and phosphorus nutrients of soil by exogenous calcium carbonate was compared. Under M+ isolation, C+ treatment significantly increased the concentration of alkali hydrolysable nitrogen in the HOST room size of 0.25 mm; C+ treatment significantly improved the 0.25-1.00 mm total phosphorus concentration and 1.00-2.00 mm effective phosphorus concentration in HOST compartment, and had no significant effect on the concentration of phosphorus in TEST chamber. In terms of element content, the difference of cypomycin was compared with septum treatment. Under C+ treatment, M+ septum significantly increased the total extraction of spherical cypmycin content of 0.25-1.00 mm in TEST compartment, but significantly reduced the total extraction of cypmycin by 2 mm particle size; M+ septum significantly increased the particle size of 0.25 mm in HOST room and 0.25-1.00 mm easily extracted balloon mildew under C- treatment. The content of 0.25 mm, 1.00-2.00 mm and 2 mm in the total extraction of cypcomycin content, and significantly increased the total extract of all the particles in the TEST chamber. The difference of the content of the cycomycin by exogenous calcium carbonate was compared. Under the M+ septum, C+ treatment improved the content of the total particle size of 2 mm in HOST room and the particle size of TEST room 2. Mm easily extracted the content of glomus mycin, significantly reduced the total extraction of 0.25-1.00 mm in the TEST chamber. Under M- septum treatment, C+ treatment significantly improved the content of the four particle sizes of the HOST compartment and the 0.25mm of TEST chamber particle size, and the total extraction of cyclosamycin. (4) the delta 13C value was compared to the delta 13C value for the delta 13C value. Under the C+ treatment, M+ isolation increased the value of delta 13C in the root, stem and leaf, and increased the delta 13C value of 0.25 mm in the HOST chamber; M+ septum increased the root and the delta 13C value in the leaves under C- treatment. The delta 13C value in the soil was not significant. Compared with the difference of the delta 13C value of the exogenous calcium carbonate, the treatment significantly increased four chambers under the M+ septum treatment. The delta 13C value of the grain size, increased the size of the HOST chamber 0.25 mm, the delta 13C value of 1.00-2.00 mm, and the delta 13C value of the root and stem leaves of the plant increased. In the M- septum treatment, the C+ treatment improved the delta 13C value in the rhizome leaves of the plant. (5) overall, the exogenous calcium carbonate and AM mycelium had influence on the delta 13C value of the plant and the soil, but the interaction between the two The effects on the value of soil and plant Delta 13C were not significant. The interaction of exogenous calcium carbonate, AM mycelium and the two could promote the uptake of nitrogen and calcium, increase the nitrogen and phosphorus nutrients of the soil, and increase the content of total cycomycin in the soil.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S792.23;S714.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍永彬;;AM菌根的分子生物學(xué)研究進(jìn)展[J];民營科技;2009年03期
2 宋亞娜,鄭偉文,王賀;AM菌根和花生/小麥間作對花生根系質(zhì)外體鐵庫形成的影響[J];中國農(nóng)業(yè)科學(xué);2001年05期
3 劉潤進(jìn),劉鵬起,徐坤,呂志范;中國鹽堿土壤中AM菌的生態(tài)分布[J];應(yīng)用生態(tài)學(xué)報(bào);1999年06期
4 王真輝;橡膠樹AM菌根研究進(jìn)展[J];林業(yè)科學(xué)研究;2001年03期
5 陳羽;姜清彬;仲崇祿;張勇;陳珍;;接種AM菌對麻楝不同種源苗期的生長效應(yīng)[J];林業(yè)科學(xué);2011年05期
6 劉春艷;王萬立;郝永娟;王勇;;AM菌根生物技術(shù)克服設(shè)施蔬菜連作障礙淺析[J];中國農(nóng)學(xué)通報(bào);2009年20期
7 袁麗環(huán);閆桂琴;朱志敏;;叢枝菌根(AM)真菌對翅果油樹幼苗根系的影響[J];西北植物學(xué)報(bào);2009年03期
8 王剛;陳楠;高芯蕊;趙正雄;;叢枝菌根(AM)對煙草的作用研究[J];中國煙草學(xué)報(bào);2011年06期
9 孔凡美;史衍璽;馮固;李曉林;許鵬亮;;AM菌對三葉草吸收、累積重金屬的影響[J];中國生態(tài)農(nóng)業(yè)學(xué)報(bào);2007年03期
10 辛國榮;孫斌;黎國喜;吳瑾;楊宇潔;王宇濤;楊中藝;;廣東不同地區(qū)冬種意大利黑麥草根際AM生理生態(tài)研究[J];中山大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年02期
相關(guān)會(huì)議論文 前9條
1 趙欣;章英杰;魏連生;林漳基;;Am(Ⅲ)膠體行為研究[A];中國高放廢物地質(zhì)處置十年進(jìn)展[C];2004年
2 周舵;龍浩騎;貫鴻志;姚軍;;Am(Ⅲ)的膠體行為[A];第二屆廢物地下處置學(xué)術(shù)研討會(huì)論文集[C];2008年
3 韓雪梅;孔雪艷;羅素軍;秦子平;陳忠恭;靳小軍;;高放廢液TRPO流程熱實(shí)驗(yàn)中總α和~(241)Am的測定[A];中國核學(xué)會(huì)核化工分會(huì)成立三十周年慶祝大會(huì)暨全國核化工學(xué)術(shù)交流年會(huì)會(huì)議論文集[C];2010年
4 于保生;陳國長;;~(241)Am全套中子評價(jià)數(shù)據(jù)的改進(jìn)和更新[A];中國原子能科學(xué)研究院年報(bào) 2009[C];2010年
5 周舵;龍浩騎;貫鴻志;;Am(Ⅲ)的膠體行為[A];中國原子能科學(xué)研究院年報(bào) 2009[C];2010年
6 耿彥霞;潘多強(qiáng);吳王鎖;;席夫堿結(jié)構(gòu)對Am(Ⅲ)和Eu(Ⅲ)萃取分離性能的影響[A];第十三屆全國核化學(xué)與放射化學(xué)學(xué)術(shù)研討會(huì)論文摘要集[C];2014年
7 貫鴻志;張振濤;蘇錫光;龍浩騎;王波;姚軍;宋志鑫;;Am在花崗巖中的吸附行為研究[A];放射性廢物處理處置學(xué)術(shù)交流會(huì)論文集[C];2007年
8 張丹丹;張慶友;;基于基團(tuán)屬性Am指數(shù)手性擴(kuò)展及應(yīng)用[A];河南省化學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文摘要集[C];2010年
9 靳強(qiáng);蘇琳;高超;吳王鎖;郭治軍;;Eu(Ⅲ)和Am(Ⅲ)在北山花崗巖上的吸附作用[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第09分會(huì):應(yīng)用化學(xué)[C];2014年
相關(guān)重要報(bào)紙文章 前2條
1 王秀軍;一款新穎的高性能AM電調(diào)諧收音組件[N];北京電子報(bào);2000年
2 記者 樊哲高;彩虹兩大新項(xiàng)目奠基首條AM——OLED生產(chǎn)線開工[N];中國電子報(bào);2009年
相關(guān)碩士學(xué)位論文 前10條
1 謝佩耘;施加外源碳酸鈣和AM菌絲體對樟樹幼苗及土壤養(yǎng)分的影響[D];貴州大學(xué);2017年
2 蔡龍;溫敏型共聚物誘導(dǎo)下大孔碳酸鈣的制備研究[D];遼寧大學(xué);2017年
3 孫廣兵;AM/殼聚糖修飾天然多孔材料制備與吸附性能研究[D];北京工業(yè)大學(xué);2016年
4 謝詠生;AM物流公司顧客滿意度評價(jià)研究[D];中南大學(xué);2011年
5 劉理;長春AM熱電廠設(shè)備維修管理的優(yōu)化研究[D];吉林大學(xué);2017年
6 劉琬;多孔碳酸鈣及以其為模板高分子吸附劑的制備[D];華北電力大學(xué);2017年
7 陳怡;AM公司物料供應(yīng)管理的策略研究[D];上海海事大學(xué);2006年
8 王進(jìn)軍;脫硫石膏制備碳酸鈣晶須及其機(jī)理研究[D];寧夏大學(xué);2017年
9 王春艷;兩種擠壓變形AM系列鎂合金的疲勞行為[D];沈陽工業(yè)大學(xué);2009年
10 沈道健;基于微生物體系加固砂土地基力學(xué)特性及機(jī)理研究[D];江蘇科技大學(xué);2017年
,本文編號:1773520
本文鏈接:http://sikaile.net/kejilunwen/nykj/1773520.html