新構(gòu)土體土壤質(zhì)量及水分與溶質(zhì)運(yùn)移研究
本文關(guān)鍵詞: 土壤質(zhì)量 水分運(yùn)動(dòng) 溶質(zhì)運(yùn)移 砒砂巖 新構(gòu)土體 晉陜蒙能源區(qū) 出處:《中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:晉陜蒙能源區(qū)是我國(guó)重要的能源基地,煤炭開采帶來(lái)經(jīng)濟(jì)效益的同時(shí)也對(duì)當(dāng)?shù)丨h(huán)境造成了極大的破壞,加之該地區(qū)屬于干旱、半干旱的生態(tài)脆弱區(qū),礦區(qū)土地復(fù)墾更是成為一種需要。為更好地認(rèn)識(shí)煤礦開采對(duì)土壤質(zhì)量的影響以及新構(gòu)土體的水分與溶質(zhì)運(yùn)移規(guī)律,本文通過(guò)分析不同土地利用類型土壤剖面的土壤質(zhì)量進(jìn)行了評(píng)價(jià),分析了植被恢復(fù)對(duì)土壤全氮及有機(jī)質(zhì)含量的影響;分析不同土地利用類型土壤不同溶質(zhì)運(yùn)移特征及運(yùn)移參數(shù)的影響因素;研究不同砒砂巖添加含量對(duì)風(fēng)沙土溶質(zhì)運(yùn)移的影響以及砒砂巖添加厚度作為隔層對(duì)排土場(chǎng)土體溶質(zhì)運(yùn)移的影響,模擬了不同構(gòu)型土體的混合、分層結(jié)構(gòu)以及復(fù)墾土壤土石混合結(jié)構(gòu)的入滲過(guò)程,主要得到以下結(jié)論:(1)與當(dāng)?shù)亓袒牟莸叵啾?由于煤礦開采,復(fù)墾排土場(chǎng)土壤質(zhì)量出現(xiàn)不同程度的退化。主要表現(xiàn)為:土壤質(zhì)地變粗,大多數(shù)屬于砂質(zhì)壤土;土壤容重變大,20-60 cm土層容重最大,60 cm以下土層容重降低;土壤p H升高,接近8.5;土壤CEC、有機(jī)質(zhì)和全氮的含量低于撂荒草地;排土場(chǎng)與非排土場(chǎng)土壤的硝態(tài)氮、銨態(tài)氮、全磷、全鉀含量分布無(wú)明顯規(guī)律。與撂荒草地的比較,農(nóng)地土壤質(zhì)量有所提高。農(nóng)地、東排土場(chǎng)刺槐林地、東排土場(chǎng)草地、北排土場(chǎng)草地、北排土場(chǎng)楊樹林地的土壤退化指數(shù)分別為14.18%、-13.56%、-8.75%、-25.63%、-24.91%。(2)在排土場(chǎng)植被恢復(fù)選擇中,與灌喬木植物相比,草本植物對(duì)土壤全氮和有機(jī)質(zhì)含量的增加作用更強(qiáng),尤其是沙打旺、苜蓿等豆科植物對(duì)土壤全氮和有機(jī)質(zhì)的提高效果較好。楊樹樣地全氮和有機(jī)質(zhì)含量均最低,說(shuō)明楊樹對(duì)土壤全氮含量的提高效果不好。表層0-10 cm土壤的全氮和有機(jī)質(zhì)含量高于10-20 cm土層含量,說(shuō)明植被恢復(fù)對(duì)0-10 cm土層改良效果更明顯。隨著復(fù)墾年限的增加,土壤全氮和有機(jī)質(zhì)的含量也隨之增加。(3)獲得了不同土地利用類型以及不同深度土柱NO3--N和NH4+-N兩種離子的運(yùn)移特征,并使用模型對(duì)運(yùn)移參數(shù)進(jìn)行了模擬,得出了影響溶質(zhì)運(yùn)移的主要因素。表層(0-20 cm)土柱較深層土柱平均穿透時(shí)間較短,其他深度土柱穿透時(shí)間分布規(guī)律不明顯。NH4+-N的穿透時(shí)間較NO3--N穿透時(shí)間延長(zhǎng),并且存在拖尾現(xiàn)象。平衡CDE模型對(duì)NO3--N運(yùn)移過(guò)程較兩區(qū)模型(T-R)擬合效果更好,不同土柱的NO3--N運(yùn)移過(guò)程不存在非物理平衡現(xiàn)象。在溶質(zhì)運(yùn)移中,對(duì)流是為主要的運(yùn)移方式。NH4+-N的穿透過(guò)程中存在化學(xué)非平衡現(xiàn)象,兩點(diǎn)模型(T-S)可以較好地?cái)M合NH4+-N的運(yùn)移過(guò)程。土壤質(zhì)地是影響NO3--N運(yùn)移最主要的因素。平均孔隙流速隨著容重的增加呈負(fù)指數(shù)函數(shù)關(guān)系遞減,初始穿透時(shí)間和完全穿透時(shí)間與容重之間可以用多項(xiàng)式函數(shù)進(jìn)行描述。彌散度隨著砂粒含量的增加呈負(fù)指數(shù)函數(shù)關(guān)系遞減,平均孔隙流速隨著砂粒含量的增加呈指數(shù)函數(shù)關(guān)系增加,Pe數(shù)隨著砂粒含量的增加呈線性函數(shù)的關(guān)系增加,說(shuō)明質(zhì)地越粗的土壤,溶質(zhì)運(yùn)移運(yùn)移的主要方式更傾向于對(duì)流。土壤理化性質(zhì)中陽(yáng)離子交換量(CEC)和土壤質(zhì)地是影響NH4+-N運(yùn)移最主要的因素。阻滯因子(R)與砂粒含量和平均孔隙流速呈極顯著負(fù)相關(guān)關(guān)系,與陽(yáng)離子交換量、容重、粉粒和粘粒含量呈極顯著正相關(guān)關(guān)系。阻滯因子與陽(yáng)離子交換量和平均孔隙流速間可分別使用指數(shù)函數(shù)和冪函數(shù)關(guān)系進(jìn)行描述。(4)添加砒砂巖可以阻滯溴離子和鈉離子在風(fēng)沙土中的運(yùn)移,阻滯效應(yīng)隨著砒砂巖含量的增加愈明顯。兩種離子的穿透時(shí)間均隨著砒砂巖含量的增加而延長(zhǎng);鈉離子穿透過(guò)程中為達(dá)到相同相對(duì)濃度,所需的孔隙體積數(shù)也隨著砒砂巖含量的增加而增大。CDE模型和兩區(qū)模型(T-R)可以較好地?cái)M合Br-穿透曲線,兩區(qū)模型擬合的精度略好于CDE模型;擬合參數(shù)顯示對(duì)流是土柱中主要的運(yùn)移方式;兩點(diǎn)模型(T-S)可以較好地模擬Na+穿透曲線。分析砒砂巖對(duì)風(fēng)沙土阻滯溶質(zhì)運(yùn)移的原因主要是:添加砒砂巖可以降低土壤的平均孔隙流速;砒砂巖中含有較高含量蒙脫石,同時(shí)CEC含量高于風(fēng)沙土,導(dǎo)致砒砂巖對(duì)鈉離子具有較強(qiáng)的吸附能力。(5)添加砒砂巖作為隔層可以阻滯溶質(zhì)在土柱中的運(yùn)移,隨著砒砂巖厚度的增加阻滯效果越好。CDE模型和兩區(qū)模型(T-R)可以較好地?cái)M合Br-穿透曲線,兩區(qū)模型擬合的精度略好于CDE模型;擬合參數(shù)顯示對(duì)流是土柱中主要的運(yùn)移方式。層狀土的水動(dòng)力彌散系數(shù)不是簡(jiǎn)單的均質(zhì)土體的水動(dòng)力彌散系數(shù)的平均值,層狀土的彌散度與均質(zhì)土體彌散度之間的關(guān)系尚不明確。兩點(diǎn)模型(T-S)可以較好地模擬Na+穿透曲線,擬合得出的砒砂巖阻滯因子遠(yuǎn)大于黃土及土石混合結(jié)構(gòu),隨著砒砂巖隔層厚度的增加阻滯因子也增大,因此可以選擇合理厚度的砒砂巖隔層阻滯溶質(zhì)的運(yùn)移。(6)添加砒砂巖可以降低新構(gòu)土體的入滲性能。砒砂巖的入滲能力低于黃土和風(fēng)沙土,黃土和風(fēng)沙土中分層填裝或均勻混合添加砒砂巖的方式均可降低其入滲能力;黃土與料姜石以及黃土與煤矸石的土石混合結(jié)構(gòu)在土石質(zhì)量比為70:30、容重分別為1.61 g/cm3和 1.54 g/cm3時(shí)擁有較低的入滲能力。入滲過(guò)程中濕潤(rùn)鋒推進(jìn)距離與累積入滲量間的關(guān)系可采用線性函數(shù)進(jìn)行表達(dá);利用Philip方程和Kostiakov入滲模型均可以較好地?cái)M合均質(zhì)土體的入滲過(guò)程,Kostiakov入滲模型對(duì)層狀結(jié)構(gòu)土體也有較好地?cái)M合結(jié)果。表層為50cm黃土、中間20cm砒砂巖,下層設(shè)置容重較高的土石混合結(jié)構(gòu)可以作為一種良好的排土場(chǎng)重構(gòu)結(jié)構(gòu),為土石混合結(jié)構(gòu)水分運(yùn)動(dòng)提供了一定的理論基礎(chǔ)。
[Abstract]:Jin-Shan-Mong energy region is an important energy base in China, coal mining brings economic benefits but also caused great damage to the local environment, and the area is arid, semi arid ecological fragile zone, land reclamation is a need for better understanding. And the new structure of soil moisture and solute transport effects on soil quality in coal mining, this paper through the analysis of the soil quality evaluation of different land use types of soil profile were analyzed. The effects of vegetation restoration on soil total nitrogen and organic matter content; analysis the impact of different land use types in different soil solute transport characteristics and transport parameters of different sandstone adding factors; the content on soil solute transport and the influence of sandstone thickness as the interlayer add effects on stackpile soil solute transport simulation, the different configurations of soil Mixed layer structure and mixed structure of embankment reclamation soil infiltration process, the main conclusions are as follows: (1) compared with the local grassland farming, due to coal mining, reclamation row soil quality soil field appear different degree of degradation. The main performance is: the soil texture become coarse, mostly sandy loam soil; soil bulk density changed, 20-60 cm soil bulk density, soil bulk density decreased below 60 cm soil; P H increased nearly 8.5; soil CEC, organic matter and total nitrogen content is lower than that of grassland; stackpile and non stackpile soil nitrate nitrogen, ammonium nitrogen, total phosphorus, total potassium content distribution is irregular. With the grassland, farmland soil quality improved. Farmland, East dump black locust forest, East dump grassland, North stackpile grassland, North stackpile poplar forest soil degradation index were 14.18%, -13.56%, -8.75%, -25.63%, -24.91%. (2) in the dump Selection of vegetation restoration, compared with irrigated tree plants, a stronger effect on the increase in soil nitrogen and organic matter content of herbaceous plants, especially good to improve the effect of Astragalus adsurgens, alfalfa and other legume plants on soil nitrogen and organic matter. Poplar samples of total nitrogen and organic matter content are the lowest, that improve the effect of poplar on soil total nitrogen content not good. The top 0-10 cm soil total nitrogen and organic matter content is higher than 10-20 cm soil content showed vegetation is more obvious in 0-10 cm soil improvement effect. With the increase of reclamation time, the content of soil nitrogen and organic matter increased. (3) the migration characteristics of different land use types and different soil depth column NO3--N and NH4+-N two kinds of ions, and the transport parameters were simulated using the model. The main factors that affect the solute transport. The surface (0-20 cm) soil column in deeper soil column average wear Through a short time, the other the depth of soil column breakthrough time distribution is not obvious.NH4+-N penetration time is NO3--N through time, and the presence of smearing. Equilibrium model of CDE NO3--N migration process is two (T-R) better fitting effect, NO3--N migration process of different soil column does not exist non physical phenomenon. In the solute balance migration, convection is the main way of penetration in the process of.NH4+-N migration in the presence of chemical non equilibrium phenomena, two models (T-S) can be used to fit the NH4+-N migration process. The soil texture is the main factor to affect the migration of NO3--N. The average pore velocity with a negative exponential function relationship decreasing increasing bulk density, and initial penetration time full penetration between time and density can be described by a polynomial function. The dispersion with a negative exponential function relationship of diminishing sand content increased, the average pore flow velocity increases with the With the exponential increase of sand content, the number of Pe increased linearly with the function of sand content increased, indicating more coarse soil texture, the main way to solute transport migration tend to convection. Soil physical and chemical properties of cation exchange capacity (CEC) and the soil texture is the main influencing factors of NH4+-N migration. The retardation factor (R) showed a significant negative correlation with sand content and average pore velocity, and cation exchange capacity, bulk density, positive correlation was found between the silt and clay content. The amount and average pore velocity can be respectively used exponential function and power function description block factor and cation exchange. (4) add feldsparthic sandstone can block bromide and sodium ion transport in sandy soils, blocking effect with increasing content of sandstone is more obvious. Two kinds of ion penetration time with sandstone content Increased; sodium ion penetration process to achieve the same relative concentration, the pore volume of the required number increases with the increase of the content of sandstone model and.CDE model two (T-R) can better fit the breakthrough curves of Br-, the two region model fitting precision is slightly better than the CDE model; the fitting parameters show convection is the main way of migration in the soil column; two models (T-S) can be used to simulate the breakthrough curves of Na+. Analysis on soil solute transport block sandstone is mainly added in sandstone can reduce the average pore velocity of soil; feldsparthic sandstone rock containing high content of montmorillonite, while CEC was higher than that in sandy soil, cause sandstone has a strong adsorption capacity of sodium ions. (5) add feldsparthic sandstone as interlayer can block the solute migration in soil columns, with the increase of the thickness of sandstone model block better the effect of the.CDE model and the two district (T -R) can better fit the breakthrough curves of Br-, the two region model fitting precision is slightly better than the CDE model; fitting parameters showed that the convection was the main way of migration in the soil column. The average hydrodynamic dispersion coefficient of hydrodynamic dispersion coefficient of layered soil is not a simple homogeneous soil with the value of the relationship between the degree of dispersion and layered soil homogeneous soil dispersion is not clear. The two models (T-S) can be used to simulate the breakthrough curves of Na+, sandstone block factor fitting is far greater than the Loess and soil rock mixture structure, also increases with the increase of retardation factor in sandstone thickness of the interlayer, the migration so you can select the reasonable thickness of sandstone layer block. (solute 6) add new structure in sandstone can reduce soil infiltration. The infiltration capacity is lower than that of loess and sandy soil in sandstone, loess and sandy soil in layered filling and mixing way add sandstone Can reduce the infiltration capacity of loess and stone material; ginger and loess and coal gangue mixture structure in rock mass ratio was 70:30, the bulk density respectively have lower infiltration capacity of 1.61 g/cm3 and 1.54 g/cm3. In the process of infiltration wetting front and infiltration cumulative relations between the linear the function of expression distance; using the Philip equation and the Kostiakov infiltration model can better fit the infiltration process of homogeneous soil, Kostiakov infiltration model has good fitting results of layered soil structure. The surface is 50cm loess, middle 20cm sandstone, debris mixed structure of the lower layer is provided with high density can be used as a good dump structure reconstruction, provides a theoretical basis for the mixture structure of water movement.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S151.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 攝曉燕;魏孝榮;魏艷春;馬天娥;許晶晶;張興昌;;砒砂巖改良風(fēng)沙土對(duì)銨態(tài)氮吸附特性影響研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年11期
2 吳奇凡;樊軍;楊曉莉;潘雅文;王亞飛;喬艷琴;王勝;;晉陜蒙接壤區(qū)露天礦層狀土壤水分入滲特征與模擬[J];土壤學(xué)報(bào);2015年06期
3 攝曉燕;魏孝榮;馬天娥;王玉紅;張興昌;;砒砂巖改良風(fēng)沙土對(duì)磷的吸附特性影響研究[J];植物營(yíng)養(yǎng)與肥料學(xué)報(bào);2015年05期
4 張磊;齊瑞鵬;張應(yīng)龍;鄭紀(jì)勇;張興昌;;砒砂巖風(fēng)化物對(duì)土壤水分特征曲線及蒸發(fā)的影響[J];土壤學(xué)報(bào);2015年01期
5 劉曉麗;馬理輝;楊榮慧;吳普特;汪有科;;黃土半干旱區(qū)棗林深層土壤水分消耗特征[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2014年12期
6 佘冬立;鄭加興;劉營(yíng)營(yíng);高雪梅;;圍墾年限和土壤容重對(duì)海涂土壤水分運(yùn)動(dòng)參數(shù)的影響[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年02期
7 攝曉燕;張興昌;魏孝榮;;適量砒砂巖改良風(fēng)沙土的吸水和保水特性[J];農(nóng)業(yè)工程學(xué)報(bào);2014年14期
8 溫婧;朱元駿;張興昌;潘洪加;攝曉燕;王倫江;;砒砂巖修復(fù)晉陜蒙能源區(qū)鉛污染土壤的研究[J];環(huán)境科學(xué)學(xué)報(bào);2015年03期
9 張露;韓霽昌;馬增輝;羅林濤;王歡元;李娟;;砒砂巖與沙復(fù)配“土壤”的質(zhì)地性狀[J];西北農(nóng)業(yè)學(xué)報(bào);2014年04期
10 溫婧;朱元駿;殷憲強(qiáng);張興昌;;砒砂巖對(duì)Pb(Ⅱ)的吸附特性研究[J];環(huán)境科學(xué)學(xué)報(bào);2014年10期
相關(guān)博士學(xué)位論文 前6條
1 伏耀龍;岷江上游干旱河谷區(qū)土壤質(zhì)量評(píng)價(jià)及侵蝕特征研究[D];西北農(nóng)林科技大學(xué);2012年
2 姜利國(guó);煤矸石山中多組分溶質(zhì)釋放—遷移規(guī)律的研究[D];遼寧工程技術(shù)大學(xué);2011年
3 孫海運(yùn);山東濟(jì)寧礦區(qū)復(fù)墾土壤理化特征及修復(fù)技術(shù)研究[D];中國(guó)礦業(yè)大學(xué)(北京);2010年
4 李卓;土壤機(jī)械組成及容重對(duì)水分特征參數(shù)影響模擬試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2009年
5 周蓓蓓;土石混合介質(zhì)水分溶質(zhì)運(yùn)移的試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2009年
6 邱莉萍;黃土高原植被恢復(fù)生態(tài)系統(tǒng)土壤質(zhì)量變化及調(diào)控措施[D];西北農(nóng)林科技大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 馬佳慧;黑岱溝礦區(qū)排土場(chǎng)植被恢復(fù)對(duì)復(fù)墾土壤性質(zhì)影響[D];西北農(nóng)林科技大學(xué);2015年
2 李鵬飛;植被恢復(fù)對(duì)黑岱溝煤礦排土場(chǎng)土壤性質(zhì)和質(zhì)量的影響研究[D];西北農(nóng)林科技大學(xué);2014年
3 李文娟;生物炭對(duì)不同質(zhì)地土壤NO_3~--N和NH_4~+-N運(yùn)移規(guī)律的影響[D];西北農(nóng)林科技大學(xué);2013年
4 崔引娣;非均質(zhì)土體溶質(zhì)穿透曲線試驗(yàn)研究[D];西北農(nóng)林科技大學(xué);2009年
5 鄭紀(jì)勇;土壤中溶質(zhì)運(yùn)移的邊界層方法[D];西北農(nóng)林科技大學(xué);2001年
,本文編號(hào):1478994
本文鏈接:http://sikaile.net/kejilunwen/nykj/1478994.html