東北典型墾區(qū)土壤物理性質(zhì)與肥力關(guān)系及其對造林的響應(yīng)
本文關(guān)鍵詞:東北典型墾區(qū)土壤物理性質(zhì)與肥力關(guān)系及其對造林的響應(yīng) 出處:《東北林業(yè)大學》2016年碩士論文 論文類型:學位論文
更多相關(guān)文章: 土壤物理性質(zhì) 土壤肥力指標 農(nóng)田 楊樹人工林 針葉林 闊葉林
【摘要】:長期不合理開發(fā)導致東北黑土肥力下降,伴隨嚴重土壤物理性質(zhì)惡化,但針對物理性質(zhì)重要性及造林恢復可能性研究較少。因此本研究以東北地區(qū)土壤為研究對象,測定不同物理性質(zhì)(土壤孔隙度、比重、容重、比表面積、土壤含水量、土壤最大吸濕水)及其它理化和肥力指標(土壤電導率(EC)、pH值、土壤有機碳(SOC)、全氮(TN)、堿解氮(AN)、全鉀(TK)、速效鉀(AK)、全磷(TP)、速效磷(AP)、球囊霉素相關(guān)土壤蛋白(TG和EEG))的基礎(chǔ)上,分別從其相關(guān)關(guān)系及受造林與否(農(nóng)田和楊樹防護林)和造林樹種(針葉林和闊葉林)的影響進行研究,得出以下結(jié)論:(1)物理性質(zhì)與其余指標相關(guān)關(guān)系方面:土壤比表面積、容重和孔隙度3個孔隙指標與其它指標顯著相關(guān)個數(shù)及相關(guān)系數(shù)R2顯示,土壤容重與土壤肥力及理化性質(zhì)變化相關(guān)性最高。不同物理指標對于表征土壤肥力的功能存在差異性:土壤的比表面積與土壤含水量的相關(guān)性最強(R2=0.24, slope=0.085),表明土壤比表面積越大,土壤持水能力越強:土壤容重與土壤SOC含量相關(guān)程度最強(R2=0.21, slope=-24.92),而土壤的孔隙度與TN含量的相關(guān)程度最高(R2=0.08,slope=0.02)。3個指標與養(yǎng)分的不同形式的相關(guān)性分析結(jié)果顯示:它們多與全量養(yǎng)分(TN、TK.TP)相關(guān)性較高(R2=0.058),而與養(yǎng)分速效量(AN.AK和AP)相關(guān)性較弱(R2=0.026)。(2)受造林與否影響方面:30余年的楊樹造林在lm土壤剖面能夠顯著增加土壤孔隙度(1.89%)、顯著降低土壤容重(60mg/cm3)和含水量(0.93%),伴有增加土壤K和降低P的趨勢,但土壤N, TG, EEG和SOC沒有明顯的變化。土壤孔隙相關(guān)指標的提升與球囊霉素和SOC在土壤物理結(jié)構(gòu)調(diào)節(jié)效能方面的提升是相關(guān)連的,并且楊樹林的線性斜率,R2值分別是農(nóng)田的1.2-2.8倍和1.6-2.4倍。養(yǎng)分的變化在不同地點和土層之間是存在顯著交互作用的。同各地點農(nóng)田相比楊樹防護林消耗更多的水,并且土壤比表面積與土壤含水量密切相關(guān)。我們的研究結(jié)果對于從土壤改進的角度對農(nóng)田造林實踐的評估和管理提供支撐。(3)受造林樹種影響方面:較針葉林而言,闊葉林在0-60cm土層內(nèi)顯著增加土壤含水量21.4%,孔隙度95%,SOC 2.2g/kg, AN 9.5mg/kg, TN 0.1g/kg, AP 1.4mg/kg, TP 0.05g/kg,顯著降低了土壤容重2.7%。此外,通過針、闊葉林間土壤理化性質(zhì)與土壤肥力相關(guān)指標的關(guān)系的差異分析得知,葉片類型的差異能夠顯著影響土壤含水量與SOC及土壤pH與土壤磷(TP、AP)的相關(guān)關(guān)系,其中土壤含水量的變化對針葉林SOC影響更大,而土壤pH的變化對闊葉林磷的影響更大。并且土壤理化指標的變化對土壤TN的影響更為顯著,尤其土壤容重的變化(R2=0.68)。我們的研究將為中國東北地區(qū)的土壤退化及其評估提供一定的數(shù)據(jù)支撐。
[Abstract]:Long-term unreasonable exploitation led to the decline of soil fertility in Northeast China, which was accompanied by the deterioration of soil physical properties. But there are few studies on the importance of physical properties and the possibility of afforestation restoration. Therefore, this study takes the soil of Northeast China as the research object, and measures different physical properties (soil porosity, specific gravity, bulk density, specific surface area). Soil water content, maximum moisture absorption) and other physical, chemical and fertility indexes (soil electrical conductivity, soil organic carbon (SOC), total nitrogen (TNN), alkali-hydrolyzed nitrogen (ANN)). Total potassium (TK), available potassium (AK), total phosphorus (TP), available phosphorus (APP), balloon mycin related soil proteins (TG and EEGG). The effects of afforestation (farmland and poplar shelterbelt) and afforestation species (coniferous forest and broad-leaved forest) were studied. The following conclusions are drawn: (1) physical properties are related to the other indexes: soil specific surface area, bulk density and porosity are significantly related to the other indexes, and the correlation coefficient R2 shows. Soil bulk density had the highest correlation with soil fertility and physical and chemical properties. There were differences in the function of soil fertility with different physical indexes. The correlation between soil specific surface area and soil water content was the strongest (P < 0.05). R2P 0.24. Slope0. 085, indicating that the larger the specific surface area of soil, the stronger the water holding capacity of soil. The correlation between soil bulk density and soil SOC content is the strongest (R2 + 0. 21). The correlation between soil porosity and TN content is the highest (R20.08). The results of correlation analysis of three indexes and nutrient were as follows: most of them had high correlation with total nutrient (TNT K. TPV) (R2N 0.058). However, the correlation with available nutrient amount (AN.AK and APP) is weaker than that with R2C0.026, AK and AP2). The poplar afforestation for more than 30 years under the influence of afforestation or not can significantly increase the soil porosity in the soil profile (Lm). Decreased soil bulk density (60mg / cm ~ (3)) and water content (0.93%), accompanied by increasing soil K and decreasing P, but soil N, TG. There was no significant change in EEG and SOC. The improvement of soil porosity related indexes was related to the improvement of soil physical structure regulation efficiency by balloon mycin and SOC and the linear slope of poplar forest. R2 values were 1.2-2.8 times and 1.6-2.4 times of farmland, respectively. There was significant interaction between different sites and soil layers in nutrient changes. Compared with the farmland in different locations, poplar shelterbelts consumed more. Water. And the soil specific surface area is closely related to the soil moisture content. Our results provide support for the evaluation and management of afforestation practices in farmland from the perspective of soil improvement. Affected by afforestation tree species: more than coniferous forest. Broad-leaved forest significantly increased soil water content in 0-60cm soil layer by 21.4m, porosity 95 / kg SOC 2.2 g / kg, an 9.5 mg / kg. TN 0.1 g / kg AP 1.4 mg / kg TP 0.05 g / kg significantly decreased soil bulk weight 2.7%. The analysis of the relationship between soil physical and chemical properties and soil fertility among broad-leaved forest showed that the difference of leaf type could significantly affect soil water content and SOC, soil pH and soil phosphorus. Among them, the change of soil water content has more influence on SOC of coniferous forest. The change of soil pH had more influence on phosphorus in broad-leaved forest, and the change of soil physical and chemical index had more significant effect on soil TN. In particular, the variation of soil bulk density is 0.68. Our study will provide some data support for soil degradation and assessment in Northeast China.
【學位授予單位】:東北林業(yè)大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:S714
【相似文獻】
相關(guān)期刊論文 前10條
1 田佳秋,蘭偉,李樹森,趙晶明;整地深度對土壤物理性質(zhì)的影響[J];防護林科技;2005年03期
2 J.A.GENT;關(guān)繼義;劉謙和;;采運作業(yè)和整地對森林土壤物理性質(zhì)的影響[J];國外林業(yè);1987年03期
3 鄭存德;程巖;張明明;;質(zhì)地對土壤物理性質(zhì)的影響及調(diào)節(jié)研究[J];干旱區(qū)資源與環(huán)境;2014年04期
4 張冬青;何騰兵;林昌虎;何佳芳;;貴州烏江流域喀斯特土壤物理性質(zhì)的研究[J];貴州科學;2006年02期
5 黎建強;張洪江;程金花;王幸;呂文星;;長江上游不同植物籬系統(tǒng)的土壤物理性質(zhì)[J];應(yīng)用生態(tài)學報;2011年02期
6 李梅;楊萬勤;肖艷;吳福忠;;干擾對畢棚溝生態(tài)旅游區(qū)土壤物理性質(zhì)的影響[J];中國農(nóng)學通報;2010年14期
7 唐淑英,楊興邦,譚軍,陳東民;光明畜牧場土壤物理性質(zhì)及其改良途徑[J];土壤;1986年02期
8 張飛;陳云明;王耀鳳;王琳琳;;黃土丘陵半干旱區(qū)檸條林對土壤物理性質(zhì)及有機質(zhì)的影響[J];水土保持研究;2010年03期
9 W·L.Pritchett;李佩忠;吳利華;;燃燒對森林土壤物理性質(zhì)的影響[J];國外林業(yè);1990年02期
10 王洪斌;森林火災(zāi)對土壤物理性質(zhì)的影響[J];林業(yè)科技情報;2002年03期
相關(guān)會議論文 前3條
1 張魯;周躍;許樹克;;西南縱向嶺谷區(qū)坡地土壤物理性質(zhì)特征研究[A];中國環(huán)境科學學會2009年學術(shù)年會論文集(第二卷)[C];2009年
2 黃毅;張玉龍;;秸稈集中深還對土壤物理性質(zhì)和玉米產(chǎn)量的影響[A];面向未來的土壤科學(上冊)——中國土壤學會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學術(shù)交流研討會論文集[C];2012年
3 侯悅龍;陳學勛;常偉東;;敖漢旗人工林地土壤物理性質(zhì)分析[A];科技創(chuàng)新與經(jīng)濟結(jié)構(gòu)調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學學術(shù)年會優(yōu)秀論文集[C];2012年
相關(guān)博士學位論文 前1條
1 王立;黃土丘陵溝壑區(qū)保護性耕作條件下土壤物理性質(zhì)及水土流失研究[D];甘肅農(nóng)業(yè)大學;2012年
相關(guān)碩士學位論文 前10條
1 裴忠雪;東北典型墾區(qū)土壤物理性質(zhì)與肥力關(guān)系及其對造林的響應(yīng)[D];東北林業(yè)大學;2016年
2 路嘉麗;基于樹種影響土壤差異的造林樹種選擇初步研究[D];東北林業(yè)大學;2016年
3 伍海兵;城市綠地土壤物理性質(zhì)特征及其改良研究[D];南京農(nóng)業(yè)大學;2013年
4 韓永俊;稻草整株還田對土壤物理性質(zhì)的影響[D];東北農(nóng)業(yè)大學;2003年
5 李海明;基于土壤物理性質(zhì)的垃圾填埋場覆土厚度研究[D];中國地質(zhì)大學(北京);2014年
6 吳迪;土壤物理性質(zhì)的化學調(diào)控技術(shù)及其對作物產(chǎn)量的影響[D];內(nèi)蒙古農(nóng)業(yè)大學;2011年
7 杜阿朋;六盤山疊疊溝小流域土壤物理性質(zhì)及其水文功能研究[D];河北農(nóng)業(yè)大學;2006年
8 藍明菊;富營養(yǎng)化污水灌溉對土壤物理性質(zhì)的影響研究[D];石河子大學;2010年
9 焦彩強;集約化生產(chǎn)模式下耕作對土壤物理性質(zhì)的影響及效應(yīng)分析[D];西北農(nóng)林科技大學;2008年
10 徐愛珍;上闊下竹復合經(jīng)營模式對林地土壤物理性質(zhì)與有機碳的影響[D];南京林業(yè)大學;2012年
,本文編號:1386292
本文鏈接:http://sikaile.net/kejilunwen/nykj/1386292.html