超聲速邊界層中的模態(tài)轉(zhuǎn)換及壁溫影響效應
發(fā)布時間:2021-07-02 21:05
對于馬赫數(shù)大于4的超聲速邊界層,Mack第二模態(tài)起主導作用。根據(jù)感受性的研究,生成第二模態(tài)的一個重要途徑是,邊界層內(nèi)的快模態(tài)在下游演化過程中因相速度"同步"而發(fā)生模態(tài)轉(zhuǎn)換。采用數(shù)值方法研究了超聲速平板邊界層中快模態(tài)到第二模態(tài)波的模態(tài)轉(zhuǎn)換過程,通過定義模態(tài)轉(zhuǎn)換系數(shù)和模態(tài)轉(zhuǎn)換區(qū)間,建立了適用于多個不同壁面溫度條件下的模態(tài)轉(zhuǎn)換系數(shù)和轉(zhuǎn)換區(qū)間與擾動頻率之間的模型公式。在此基礎上,基于線性穩(wěn)定性理論,發(fā)展了包含模態(tài)轉(zhuǎn)換過程的擾動演化的計算方法,并采用拋物化穩(wěn)定性方程進行了驗證。結果表明,在較廣泛的壁面溫度條件下,該方法可以準確計算包含快模態(tài)到第二模態(tài)轉(zhuǎn)換過程的幅值演化。該方法由于考慮了第二模態(tài)的生成機制,比原有的基于線性理論的轉(zhuǎn)捩預測方法更加具有物理依據(jù)。
【文章來源】:空氣動力學學報. 2020,38(06)北大核心CSCD
【文章頁數(shù)】:8 頁
【部分圖文】:
快、慢模態(tài)的相速度和增長率
入口處快模態(tài)的特征函數(shù)
快模態(tài)向下游的演化
【參考文獻】:
期刊論文
[1]Response of a hypersonic blunt cone boundary layer to slow acoustic waves with assessment of various routes of receptivity[J]. Bingbing WAN,Jisheng LUO,Caihong SU. Applied Mathematics and Mechanics(English Edition). 2018(11)
[2]高超聲速邊界層轉(zhuǎn)捩研究現(xiàn)狀與發(fā)展趨勢[J]. 陳堅強,涂國華,張毅鋒,徐國亮,袁先旭,陳誠. 空氣動力學學報. 2017(03)
[3]Linear spatial instability analysis in 3D boundary layers using plane-marching 3D-LPSE[J]. Jianxin LIU,Shaolong ZHANG,Song FU. Applied Mathematics and Mechanics(English Edition). 2016(08)
[4]Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Jun Gao,Ji-Sheng Luo,Xue-Song Wu. Acta Mechanica Sinica. 2015(06)
[5]高超聲速邊界層的轉(zhuǎn)捩及預測[J]. 羅紀生. 航空學報. 2015(01)
[6]Transition prediction of the supersonic boundary layer on a cone under the consideration of receptivity to slow acoustic waves[J]. SU CaiHong1,2*& ZHOU Heng11Department of Mechanics, Tianjin University, Tianjin 300072, China;2Tianjin Key Laboratory of Modern Engineer Mechanics, Tianjin 300072, China. Science China(Physics,Mechanics & Astronomy). 2011(10)
[7]Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack[J]. SU CaiHong1 & ZHOU Heng1,2 1 Department of Mechanics,Tianjin University,Tianjin 300072,China;2 Liu-Hui Center of Applied Mathematics,Nankai University and Tianjin University,Tianjin 300072,China. Science in China(Series G:Physics,Mechanics & Astronomy). 2009(08)
[8]Verification of parabolized stability equations for its application to compressible boundary layers[J]. 張永明,周恒. Applied Mathematics and Mechanics(English Edition). 2007(08)
博士論文
[1]超聲速邊界層的穩(wěn)定性分析方法及聲波感受性[D]. 高軍.天津大學 2014
[2]PSE在可壓縮邊界層中擾動演化和超音速邊界層二次失穩(wěn)中的應用[D]. 張永明.天津大學 2008
本文編號:3261228
【文章來源】:空氣動力學學報. 2020,38(06)北大核心CSCD
【文章頁數(shù)】:8 頁
【部分圖文】:
快、慢模態(tài)的相速度和增長率
入口處快模態(tài)的特征函數(shù)
快模態(tài)向下游的演化
【參考文獻】:
期刊論文
[1]Response of a hypersonic blunt cone boundary layer to slow acoustic waves with assessment of various routes of receptivity[J]. Bingbing WAN,Jisheng LUO,Caihong SU. Applied Mathematics and Mechanics(English Edition). 2018(11)
[2]高超聲速邊界層轉(zhuǎn)捩研究現(xiàn)狀與發(fā)展趨勢[J]. 陳堅強,涂國華,張毅鋒,徐國亮,袁先旭,陳誠. 空氣動力學學報. 2017(03)
[3]Linear spatial instability analysis in 3D boundary layers using plane-marching 3D-LPSE[J]. Jianxin LIU,Shaolong ZHANG,Song FU. Applied Mathematics and Mechanics(English Edition). 2016(08)
[4]Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction[J]. Jun Gao,Ji-Sheng Luo,Xue-Song Wu. Acta Mechanica Sinica. 2015(06)
[5]高超聲速邊界層的轉(zhuǎn)捩及預測[J]. 羅紀生. 航空學報. 2015(01)
[6]Transition prediction of the supersonic boundary layer on a cone under the consideration of receptivity to slow acoustic waves[J]. SU CaiHong1,2*& ZHOU Heng11Department of Mechanics, Tianjin University, Tianjin 300072, China;2Tianjin Key Laboratory of Modern Engineer Mechanics, Tianjin 300072, China. Science China(Physics,Mechanics & Astronomy). 2011(10)
[7]Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack[J]. SU CaiHong1 & ZHOU Heng1,2 1 Department of Mechanics,Tianjin University,Tianjin 300072,China;2 Liu-Hui Center of Applied Mathematics,Nankai University and Tianjin University,Tianjin 300072,China. Science in China(Series G:Physics,Mechanics & Astronomy). 2009(08)
[8]Verification of parabolized stability equations for its application to compressible boundary layers[J]. 張永明,周恒. Applied Mathematics and Mechanics(English Edition). 2007(08)
博士論文
[1]超聲速邊界層的穩(wěn)定性分析方法及聲波感受性[D]. 高軍.天津大學 2014
[2]PSE在可壓縮邊界層中擾動演化和超音速邊界層二次失穩(wěn)中的應用[D]. 張永明.天津大學 2008
本文編號:3261228
本文鏈接:http://sikaile.net/kejilunwen/lxlw/3261228.html
最近更新
教材專著