軸向變速運動局部浸液單向板的組合共振
發(fā)布時間:2021-04-06 03:51
論文研究了時變速度作用下局部浸液板的組合共振動力學(xué)特性;赩on Kármán大撓度板理論,考慮流固耦合、軸向張力、軸向時變速度等因素,建立局部浸液板的非線性動力學(xué)方程,并應(yīng)用Galerkin法將方程進行離散,獲得模態(tài)坐標(biāo)上的非線性方程組。分別采用多尺度法和數(shù)值方法分析了平均速度、脈動速度、張力等參數(shù)對系統(tǒng)非線性動力學(xué)特性的影響。結(jié)果表明:系統(tǒng)發(fā)生組合共振時,展現(xiàn)出復(fù)雜的動力學(xué)行為;第一階模態(tài)響應(yīng)幅值遠大于第二階模態(tài)響應(yīng)幅值;平均速度、脈動速度幅值對系統(tǒng)幅頻響應(yīng)曲線的影響較為顯著。
【文章來源】:力學(xué)與實踐. 2020,42(05)北大核心
【文章頁數(shù)】:7 頁
【部分圖文】:
脈動速度幅值對組合共振幅值的影響(續(xù))
選取v0=2 m/s,v1=40 m/s,圖6中,圖(a1)、圖(b1)和圖(a2)、圖(b2)張力分別為F=3000 N,F=4000 N。隨著張力的逐漸增大,系統(tǒng)幅頻響應(yīng)曲線結(jié)構(gòu)形式發(fā)生變化,耦合現(xiàn)象逐漸淡化,周期解4值區(qū)范圍變小,共振區(qū)域減小。圖5 脈動速度幅值對組合共振幅值的影響
圖6 張力對組合共振幅值的影響
【參考文獻】:
期刊論文
[1]軸向移動局部浸液單向板的1:3內(nèi)共振分析[J]. 李紅影,郭星輝,王延慶,李健,謝里陽,陳波. 力學(xué)學(xué)報. 2012(03)
[2]軸向運動大撓度板的非線性動力學(xué)行為[J]. 劉金堂,楊曉東,張宇飛. 工程力學(xué). 2011(10)
[3]軸向運動薄板非線性振動及其穩(wěn)定性研究[J]. 殷振坤,陳樹輝. 動力學(xué)與控制學(xué)報. 2007(04)
[4]求解非線性動力系統(tǒng)周期解的改進打靶法[J]. 夏志鵬,鄭鐵生. 力學(xué)與實踐. 2007(06)
[5]粘彈性變速運動梁穩(wěn)定性的直接多尺度分析[J]. 楊曉東,陳立群. 振動工程學(xué)報. 2005(02)
[6]非線性Duffing方程的高精度近似解[J]. 林建國. 力學(xué)與實踐. 1999(05)
碩士論文
[1]對邊簡支部分浸液板的非線性振動分析[D]. 羅驕.東北大學(xué) 2010
本文編號:3120701
【文章來源】:力學(xué)與實踐. 2020,42(05)北大核心
【文章頁數(shù)】:7 頁
【部分圖文】:
脈動速度幅值對組合共振幅值的影響(續(xù))
選取v0=2 m/s,v1=40 m/s,圖6中,圖(a1)、圖(b1)和圖(a2)、圖(b2)張力分別為F=3000 N,F=4000 N。隨著張力的逐漸增大,系統(tǒng)幅頻響應(yīng)曲線結(jié)構(gòu)形式發(fā)生變化,耦合現(xiàn)象逐漸淡化,周期解4值區(qū)范圍變小,共振區(qū)域減小。圖5 脈動速度幅值對組合共振幅值的影響
圖6 張力對組合共振幅值的影響
【參考文獻】:
期刊論文
[1]軸向移動局部浸液單向板的1:3內(nèi)共振分析[J]. 李紅影,郭星輝,王延慶,李健,謝里陽,陳波. 力學(xué)學(xué)報. 2012(03)
[2]軸向運動大撓度板的非線性動力學(xué)行為[J]. 劉金堂,楊曉東,張宇飛. 工程力學(xué). 2011(10)
[3]軸向運動薄板非線性振動及其穩(wěn)定性研究[J]. 殷振坤,陳樹輝. 動力學(xué)與控制學(xué)報. 2007(04)
[4]求解非線性動力系統(tǒng)周期解的改進打靶法[J]. 夏志鵬,鄭鐵生. 力學(xué)與實踐. 2007(06)
[5]粘彈性變速運動梁穩(wěn)定性的直接多尺度分析[J]. 楊曉東,陳立群. 振動工程學(xué)報. 2005(02)
[6]非線性Duffing方程的高精度近似解[J]. 林建國. 力學(xué)與實踐. 1999(05)
碩士論文
[1]對邊簡支部分浸液板的非線性振動分析[D]. 羅驕.東北大學(xué) 2010
本文編號:3120701
本文鏈接:http://sikaile.net/kejilunwen/lxlw/3120701.html
最近更新
教材專著