結(jié)構(gòu)動(dòng)力響應(yīng)分析的三階顯隱式時(shí)程積分方法
發(fā)布時(shí)間:2018-12-05 15:39
【摘要】:基于泰勒級(jí)數(shù)展開(kāi)式提出了一種用于結(jié)構(gòu)動(dòng)力響應(yīng)分析的高精度時(shí)程積分方法,該方法假設(shè)t時(shí)刻的速度和加速度由t-Δt時(shí)刻、t時(shí)刻、t+Δt時(shí)刻的速度和加速度加權(quán)表示,并可根據(jù)求解需要調(diào)節(jié)權(quán)值,將積分算法構(gòu)造成隱式格式或顯式格式。通過(guò)理論分析和數(shù)值算例,計(jì)算討論了該算法的穩(wěn)定性和精度,確定了最佳的權(quán)值和允許的時(shí)間步長(zhǎng)。結(jié)果表明:本文算法最高具有三階精度,且具有振幅衰減率低、周期延長(zhǎng)率極小等優(yōu)點(diǎn)。最后結(jié)合一個(gè)鐵道工程實(shí)例,表明本文算法適用于大型非線性動(dòng)態(tài)響應(yīng)的精確快速求解。
[Abstract]:Based on Taylor series expansion, a high precision time-history integral method for structural dynamic response analysis is proposed. The method assumes that the velocity and acceleration of t time are weighted by the velocity and acceleration of t- 螖 t moment, t time, t 螖 t moment, and t 螖 t moment. The integral algorithm can be constructed into an implicit scheme or an explicit scheme according to the need to adjust the weight value of the solution. Through theoretical analysis and numerical examples, the stability and accuracy of the algorithm are discussed, and the optimal weight and the allowable time step are determined. The results show that the algorithm has the highest third-order accuracy, and has the advantages of low amplitude attenuation rate and minimal period extension rate. Finally, an example of railway engineering shows that the proposed algorithm is suitable for the accurate and fast solution of large nonlinear dynamic responses.
【作者單位】: 湖南大學(xué)汽車車身先進(jìn)設(shè)計(jì)制造國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金(U1234208) 牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(TPL1310)
【分類號(hào)】:O302;O241.8
本文編號(hào):2365268
[Abstract]:Based on Taylor series expansion, a high precision time-history integral method for structural dynamic response analysis is proposed. The method assumes that the velocity and acceleration of t time are weighted by the velocity and acceleration of t- 螖 t moment, t time, t 螖 t moment, and t 螖 t moment. The integral algorithm can be constructed into an implicit scheme or an explicit scheme according to the need to adjust the weight value of the solution. Through theoretical analysis and numerical examples, the stability and accuracy of the algorithm are discussed, and the optimal weight and the allowable time step are determined. The results show that the algorithm has the highest third-order accuracy, and has the advantages of low amplitude attenuation rate and minimal period extension rate. Finally, an example of railway engineering shows that the proposed algorithm is suitable for the accurate and fast solution of large nonlinear dynamic responses.
【作者單位】: 湖南大學(xué)汽車車身先進(jìn)設(shè)計(jì)制造國(guó)家重點(diǎn)實(shí)驗(yàn)室;
【基金】:國(guó)家自然科學(xué)基金(U1234208) 牽引動(dòng)力國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(TPL1310)
【分類號(hào)】:O302;O241.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 李立恒;李憲玄;;動(dòng)力響應(yīng)分析中的數(shù)值計(jì)算方法[J];航空計(jì)算技術(shù);1985年02期
,本文編號(hào):2365268
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2365268.html
最近更新
教材專著