基于Chebyshev譜方法的多孔介質(zhì)二維方腔內(nèi)自然流動(dòng)模擬
發(fā)布時(shí)間:2018-11-21 10:31
【摘要】:采用Chebyshev配置點(diǎn)譜方法對局部熱平衡狀態(tài)下多孔介質(zhì)方腔內(nèi)的自然流動(dòng)進(jìn)行了模擬,使用Chebyshev-Gauss-Lobatto配置點(diǎn)對無量綱化的控制方程進(jìn)行了空間上的離散,離散方程組采用高效矩陣對角化方法進(jìn)行了求解.將所得結(jié)果與已有文獻(xiàn)進(jìn)行了對比,計(jì)算結(jié)果吻合良好.為驗(yàn)證該數(shù)值方法的精度,構(gòu)造了一個(gè)精確解對該方法的求解誤差進(jìn)行了測試,結(jié)果表明,Chebyshev配置點(diǎn)譜方法具有很高的計(jì)算精度.最后,在驗(yàn)證程序正確性的基礎(chǔ)上,研究了Ra對流場、溫度場及努塞爾數(shù)的影響.
[Abstract]:The Chebyshev collocation point spectrum method is used to simulate the natural flow in the square cavity of porous media in the state of local thermal equilibrium. The dimensionless governing equations are discretized by using the Chebyshev-Gauss-Lobatto collocation points. The discrete equations are solved by the efficient matrix diagonalization method. The calculated results are in good agreement with the previous literatures. In order to verify the accuracy of the numerical method, an exact solution is constructed to test the error of the method. The results show that the Chebyshev collocation point spectrum method has a high accuracy. Finally, the effects of Ra flow field, temperature field and Nussel number are studied on the basis of verifying the correctness of the program.
【作者單位】: 東北大學(xué)材料電磁過程研究教育部重點(diǎn)實(shí)驗(yàn)室;武漢科技大學(xué)省部共建耐火材料與冶金國家重點(diǎn)實(shí)驗(yàn)室;大連理工大學(xué)能源與動(dòng)力工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(11402180)
【分類號】:O357.3
[Abstract]:The Chebyshev collocation point spectrum method is used to simulate the natural flow in the square cavity of porous media in the state of local thermal equilibrium. The dimensionless governing equations are discretized by using the Chebyshev-Gauss-Lobatto collocation points. The discrete equations are solved by the efficient matrix diagonalization method. The calculated results are in good agreement with the previous literatures. In order to verify the accuracy of the numerical method, an exact solution is constructed to test the error of the method. The results show that the Chebyshev collocation point spectrum method has a high accuracy. Finally, the effects of Ra flow field, temperature field and Nussel number are studied on the basis of verifying the correctness of the program.
【作者單位】: 東北大學(xué)材料電磁過程研究教育部重點(diǎn)實(shí)驗(yàn)室;武漢科技大學(xué)省部共建耐火材料與冶金國家重點(diǎn)實(shí)驗(yàn)室;大連理工大學(xué)能源與動(dòng)力工程學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(11402180)
【分類號】:O357.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王全龍;對《弱Chebyshev集與樣條》一文的訂正和推廣[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);1981年02期
2 周家斌;ON THE EXPANSION OF CHEBYSHEV POLYNOMIALS IN IRREGULAR GRIDS[J];A Monthly Journal of Science;1982年05期
3 孫燮華;THE EXACTLY POINTWISE DEGREE OF APPROXIMATION OF HERMITE-FEJ,
本文編號:2346716
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2346716.html
最近更新
教材專著