有多余坐標(biāo)完整系統(tǒng)的自由運(yùn)動(dòng)
[Abstract]:For holonomic mechanical systems, if the selected parameters are not completely independent, they are called holonomic systems with redundant coordinates. Because there is no binding force in the Lagrange equation of the second kind of holonomic mechanical system, in order to study the binding force of holonomic mechanical system, the Lagrange equation with superfluous coordinates or the Lagrange equation of the first kind should be adopted. Some dynamic problems require no binding force, while others require little binding force. If the binding force is zero, it is called the free motion of the system. In this paper, the problem of free motion of a system with redundant coordinate holonomic system is proposed and studied. In order to study the free motion of the system, the differential equations of motion of the system with redundant coordinates are established by using the d'Alembert--Lagrange principle and the Lagrange multiplier method. Secondly, the algebraic equations satisfied by the multipliers are established by the equations of motion and constraint equations of the holonomic system with redundant coordinates and the binding expressions are obtained. Finally, by the definition of free motion of constrained system, all multipliers are zero, and the condition of realizing free motion of system is obtained. The number of these conditions is equal to the number of constraint equations. They depend on the kinetic energy, generalized forces and constraint equations of the system. That is, given kinetic energy and constraint equation, these conditions will give the relationship between generalized forces when realizing free motion. Given the kinetic energy and the generalized force, these conditions will give the constraints on the constraint equation when the free motion is realized. Given the generalized force and the constraint equation, these conditions will give the restriction of kinetic energy when the free motion is realized. At the end of the paper, examples are given to illustrate the application of the method and the results.
【作者單位】: 北京理工大學(xué)宇航學(xué)院;北京理工大學(xué)數(shù)學(xué)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(10932002,11272050,11572034)
【分類號(hào)】:O316
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍運(yùn)佳;非完整系統(tǒng)的動(dòng)力學(xué)偏加速度方程[J];中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào);1998年04期
2 方建會(huì);二階非Четаев型非完整系統(tǒng)的守恒律[J];應(yīng)用數(shù)學(xué)和力學(xué);2000年07期
3 喬永芬,馬云鵬;廣義完整系統(tǒng)的能量方程[J];黃淮學(xué)刊(自然科學(xué)版);1998年S3期
4 梅鳳翔,許學(xué)軍;廣義Chaplygin系統(tǒng)的約化[J];物理學(xué)報(bào);2005年09期
5 張秀梅;m階非完整系統(tǒng)的第一積分與積分不變量[J];遼寧工學(xué)院學(xué)報(bào);2000年06期
6 張相武;;高階非完整系統(tǒng)的高階廣義Appell方程[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
7 張秀梅;m階非完整系統(tǒng)的Appell型方程[J];錦州師范學(xué)院學(xué)報(bào)(自然科學(xué)版);1999年02期
8 李元成;高階單面非完整系統(tǒng)的Noether定理[J];長(zhǎng)沙大學(xué)學(xué)報(bào);2002年04期
9 李元成;二階單面非完整系統(tǒng)的Noether定理[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年01期
10 張偉偉;方建會(huì);張斌;;事件空間離散完整系統(tǒng)的Noether理論[J];動(dòng)力學(xué)與控制學(xué)報(bào);2012年02期
,本文編號(hào):2309658
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2309658.html