隨機激勵下滯遲系統(tǒng)的穩(wěn)態(tài)響應(yīng)閉合解
[Abstract]:Hysteretic system is a kind of typical strongly nonlinear system. The hysteresis force depends not only on the instantaneous deformation of the system, but also on the deformation history. Although the stochastic vibration of hysteretic systems has been widely studied, the exact closed solution of probability density function for stochastic response of hysteretic systems has not been obtained. In this paper, the approximate closed solution of probability density function of steady-state response of Bouc-Wen hysteretic system excited by Gao Si white noise is obtained by using iterative weighted residual method. First of all, we use the equivalent linearization method to calculate the steady state Gao Si probability density function of the system, then we construct the weight function and use the weighted residuals method to obtain the non-Gao Si probability density function in the form of exponential polynomial of the system. Finally, the iterative process is introduced. The weight function is optimized step by step to improve the accuracy of the calculated results. The steady-state response of steel fiber ceramsite concrete structure under random earthquake excitation is taken as an example. The parameters of Bouc-Wen model are based on quasi-static test data and are identified by least square method. Compared with the Monte Carlo simulation results, the accuracy of the results obtained by the equivalent linearization method is poor, the results obtained by the weighted residuals method can show nonlinear characteristics, but the accuracy is still not satisfactory. The approximate closed solution obtained by the iterative weighted residual method is in good agreement with the result of Monte Carlo simulation, and for the strong random excitation case, the incremental iterative weighted residual method has a higher efficiency. The theoretical analytical solutions obtained are of high accuracy. The results show that the obtained approximate closed solutions not only have important practical application value in the field of civil engineering, but also can be used as a standard to test the accuracy of other nonlinear system stochastic response prediction methods.
【作者單位】: 華僑大學(xué)土木工程學(xué)院;加州大學(xué)Merced分校工程學(xué)院;
【基金】:國家自然科學(xué)基金(11172197,11332008,11572215,11672111,51608211) 福建省自然科學(xué)基金(2013J05080) 福建省高校杰出青年科研人才培育計劃 華僑大學(xué)優(yōu)秀青年科技創(chuàng)新人才(ZQN-YX307)資助項目
【分類號】:O324
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 駱東平,李鴻芬,,羅斌;阻尼材料對環(huán)肋柱殼穩(wěn)態(tài)響應(yīng)影響的分析[J];振動工程學(xué)報;1995年03期
2 李大望,霍達(dá),周錫元,石志曉;摩擦擺系統(tǒng)的穩(wěn)態(tài)響應(yīng)概率分布研究[J];振動與沖擊;2002年01期
3 張淼;;虧損結(jié)構(gòu)振動方程的穩(wěn)態(tài)響應(yīng)求解[J];吉林師范大學(xué)學(xué)報(自然科學(xué)版);2014年01期
4 管迪;陳樂生;;分段線性不對稱遲滯系統(tǒng)的穩(wěn)態(tài)響應(yīng)[J];機械強度;2009年02期
5 劉洋,王振;R-法在激振頻率較高的穩(wěn)態(tài)響應(yīng)計算中的調(diào)整[J];油氣田地面工程;2002年06期
6 金基鐸;三線性滯回系統(tǒng)的穩(wěn)態(tài)響應(yīng)[J];力學(xué)季刊;2003年01期
7 魏建萍;蘇先樾;;彈性方柱中波的傳播規(guī)律 Ⅰ.頻譜、群速度曲線和穩(wěn)態(tài)響應(yīng)[J];北京大學(xué)學(xué)報(自然科學(xué)版);2007年05期
8 管迪;陳樂生;;含間隙遲滯非線性系統(tǒng)的穩(wěn)態(tài)響應(yīng)[J];機械工程學(xué)報;2008年10期
9 胡明勇;王安穩(wěn);章向明;;約束阻尼層合板的穩(wěn)態(tài)響應(yīng)[J];應(yīng)用力學(xué)學(xué)報;2010年01期
10 劉林超;楊驍;;基于多孔介質(zhì)理論的飽和土體中圓形隧道洞穩(wěn)態(tài)響應(yīng)分析[J];應(yīng)用力學(xué)學(xué)報;2009年01期
相關(guān)會議論文 前4條
1 熊柳楊;張國策;丁虎;陳立群;;屈曲黏彈性梁受迫振動的穩(wěn)態(tài)響應(yīng)[A];第十四屆全國非線性振動暨第十一屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議摘要集與會議議程[C];2013年
2 徐自力;劉雅琳;;基于時頻域交互算法的干摩擦阻尼葉片穩(wěn)態(tài)響應(yīng)分析[A];第九屆全國振動理論及應(yīng)用學(xué)術(shù)會議論文摘要集[C];2007年
3 代胡亮;王琳;;多尺度法分析輸液管渦激振動的穩(wěn)態(tài)響應(yīng)[A];第九屆全國動力學(xué)與控制學(xué)術(shù)會議會議手冊[C];2012年
4 齊輝;潘向南;趙元博;;彈性帶形域內(nèi)SH波對圓柱孔洞的穩(wěn)態(tài)響應(yīng)[A];中國力學(xué)大會——2013論文摘要集[C];2013年
本文編號:2232819
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2232819.html