快速拼裝式防爆墻消波性能數(shù)值模擬研究
發(fā)布時(shí)間:2018-06-21 08:01
本文選題:爆炸力學(xué) + 防爆墻。 參考:《爆破》2017年03期
【摘要】:為研究快速拼裝式防爆墻墻后超壓分布規(guī)律及影響因素,基于2D映射3D網(wǎng)格建模技術(shù),采用AUTODYN有限元軟件分別對(duì)TNT當(dāng)量為6.82 kg,爆高1 m、爆距3 m、墻厚0.5 m,墻體高度為1.5 m、2 m、2.5 m的計(jì)算模型和比例爆距分別1.58 m/kg~(1/3)、1.28 m/kg~(1/3)、1.05 m/kg~(1/3)的計(jì)算模型以及比例爆距為1.05 m/kg~(1/3),爆高1 m、墻高2 m、墻厚0.5 m,爆距為2 m、3 m、4 m的計(jì)算模型進(jìn)行了模擬,分析了墻體高度、比例爆距和炸藥位置對(duì)墻后超壓分布的影響。結(jié)果表明:墻體高度增加將顯著增強(qiáng)防爆墻消波性能,墻體高度在1.5~2.5 m范圍內(nèi)變化時(shí),墻后消波系數(shù)變化較大;隨著比例爆距的減小,墻后較遠(yuǎn)處消波系數(shù)有所增大;隨著測(cè)點(diǎn)高度和爆高增大,測(cè)點(diǎn)處受到的防爆墻保護(hù)效應(yīng)將減小。綜合考慮以上因素對(duì)墻后測(cè)點(diǎn)超壓的影響,擬合出了計(jì)算墻后超壓大小的公式,計(jì)算結(jié)果與數(shù)值模擬結(jié)果能較好的吻合。
[Abstract]:In order to study the distribution of overpressure behind the wall and its influencing factors, 2D mapping 3D mesh modeling technology is used to model the wall. The calculation model of TNT equivalent of 6.82 kg, explosion height of 1 m, explosion distance of 3 m, wall thickness of 0.5 m, wall height of 1.5 m-1 / 2 m and the proportional detonation distance of 1.58 m / kg / 3 / 1.28 mkg-1 / 3 / 31.05 mkg/ kg / 1 / 3 by using AUTODYN finite element software, and the proportional detonation distance of 1.05 mm2 / kg / 1 / 3) were calculated by using the AUTODYN finite element software. The model of 1 m, 2 m high, 0.5 m thick and 2 m / 3 m explosion distance is simulated. The influence of wall height, proportional detonation distance and explosive position on the distribution of overpressure behind the wall is analyzed. The results show that the wave dissipation performance of explosion-proof wall will be significantly enhanced with the increase of wall height. When the wall height changes in the range of 1.5 ~ 2.5 m, the wave dissipation coefficient behind the wall will change greatly, and the wave dissipation coefficient behind the wall will increase with the decrease of the proportional blasting distance. With the increase of the height and height of the measuring point, the protective effect of the explosion-proof wall on the measuring point will be reduced. Considering the influence of the above factors on the overpressure of the measuring point behind the wall, the formula for calculating the overpressure behind the wall is fitted, and the calculated results are in good agreement with the numerical simulation results.
【作者單位】: 空軍工程大學(xué)機(jī)場(chǎng)建筑工程系;爆炸沖擊防災(zāi)減災(zāi)國(guó)家重點(diǎn)實(shí)驗(yàn)室;中國(guó)航空港建設(shè)第三工程總隊(duì);
【基金】:國(guó)家自然科學(xué)青年基金項(xiàng)目(51508568) 爆炸沖擊防災(zāi)減災(zāi)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(DPMEIKF201409)
【分類(lèi)號(hào)】:O383
,
本文編號(hào):2047830
本文鏈接:http://sikaile.net/kejilunwen/lxlw/2047830.html
最近更新
教材專(zhuān)著