含隨機微裂紋的橢圓孔口應(yīng)力分析
發(fā)布時間:2018-04-24 13:09
本文選題:橢圓孔口 + 微裂紋 ; 參考:《上海交通大學(xué)學(xué)報》2016年02期
【摘要】:針對實際工程中廣泛存在的孔洞邊緣含有隨機微裂紋的孔口應(yīng)力分析問題建立了理論模型.利用微裂紋在小尺度下的局部保角性構(gòu)造近似的復(fù)變函數(shù),通過對微裂紋與宏觀孔洞的尺度分離獲得了不同尺度下橢圓孔口的應(yīng)力場,并擴大了復(fù)變函數(shù)的應(yīng)用范圍.結(jié)果表明,通過近似的復(fù)變函數(shù)的構(gòu)造和微裂紋與宏觀孔洞的尺度分離,能夠準確計算含微裂紋橢圓孔口的應(yīng)力場和應(yīng)力強度因子.當含隨機微裂紋的橢圓孔洞所在平面承受豎向均布載荷時,橢圓長短軸的比值越大,應(yīng)力強度因子的極值越大,且應(yīng)力強度因子沿橢圓邊緣的衰減速度越快;當橢圓長短軸的比值足夠小時,微裂紋位置對應(yīng)力強度因子的影響不大.
[Abstract]:A theoretical model is established for the stress analysis of holes with random microcracks on the edge of holes in practical engineering. By using the local conformal property of microcracks in small scale to construct approximate complex variable function, the stress field of elliptical orifice at different scales is obtained by separating the microcrack from the macro pore, and the application range of complex variable function is enlarged. The results show that the stress field and stress intensity factor of elliptical orifice with microcracks can be accurately calculated by the construction of approximate complex variable function and the scale separation of microcracks from macroscopic holes. When the plane of the elliptical cavity with random microcracks is subjected to vertical uniform load, the larger the ratio of the long and short axis of the ellipse is, the greater the extreme value of the stress intensity factor is, and the faster the attenuation speed of the stress intensity factor is along the edge of the ellipse. When the ratio of the long and short axes of the ellipse is small enough, the microcrack position has little effect on the stress intensity factor.
【作者單位】: 東南大學(xué)工程力學(xué)系;
【基金】:國家自然科學(xué)基金項目(11072060)資助
【分類號】:O346.1
【參考文獻】
相關(guān)期刊論文 前2條
1 郭懷民;劉官廳;皮建東;;帶裂紋的橢圓孔口問題的應(yīng)力分析[J];固體力學(xué)學(xué)報;2007年03期
2 祝江鴻;楊建輝;施高萍;王s,
本文編號:1796768
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1796768.html
最近更新
教材專著