非定常求解的內(nèi)迭代初值對計算效率的影響研究
發(fā)布時間:2018-03-27 19:07
本文選題:初值外插 切入點:非定常流場求解 出處:《西北工業(yè)大學學報》2016年01期
【摘要】:基于非定常流場的雙時間求解方法,提出了一種提高非定常流場求解效率的有效策略。通過對前幾個時刻的流場信息進行外插來確定下一時刻的迭代初值,使之更接近于收斂解,降低內(nèi)迭代初始殘值,進而提高了非定常流場的求解效率。將流場中每個點的守恒量在時間方向上進行泰勒級數(shù)展開,設計了若干種外插格式。采用繞圓柱非定常流動的求解來驗證本方法的計算效果,并研究了不同初值外插格式、空間離散格式、時間步長和收斂標準對初值外插方法效果的影響。研究表明,在雙時間步法基礎上,采用初值外插策略可普遍提高計算效率,其中交替外插策略可以普遍將求解效率提高1倍左右。相比于迎風格式,該方法對中心格式的求解效率提高更顯著,并且對于不同的收斂標準和時間步數(shù)均有非常明顯的效果。
[Abstract]:Based on the two-time solution method of unsteady flow field, an effective strategy to improve the efficiency of solving unsteady flow field is proposed. The initial iteration value of the next moment is determined by extrapolating the flow field information of the previous time. By making it closer to the convergence solution and reducing the initial residual value of the internal iteration, the efficiency of solving the unsteady flow field is improved. The Taylor series expansion of the conserved quantity of each point in the flow field is carried out in the time direction. Several extrapolation schemes are designed. The solution of unsteady flow around a cylinder is used to verify the results of this method, and the different initial extrapolation schemes, spatial discrete schemes, are studied. The effect of time step size and convergence criterion on the effect of initial value extrapolation method is studied. It is shown that based on the dual time step method, the calculation efficiency can be generally improved by using the initial value extrapolation strategy. The alternative extrapolation strategy can generally increase the efficiency of the solution by about twice as much as that of the upwind scheme. Compared with the upwind scheme, the method can improve the efficiency of the central scheme more significantly, and has a very obvious effect on the different convergence criteria and the number of time steps.
【作者單位】: 西北工業(yè)大學航空學院;
【分類號】:O35
【相似文獻】
相關期刊論文 前3條
1 周開明,廖鴻志;一組求雙側(cè)迭代初值的新方法[J];云南大學學報(自然科學版);1994年04期
2 廖鴻志;求雙側(cè)迭代初值組的一種新方法[J];云南大學學報(自然科學版);1986年02期
3 ;[J];;年期
,本文編號:1672835
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1672835.html
最近更新
教材專著