用于柔性轉(zhuǎn)子主動(dòng)控制的等幾何Timoshenko梁模型及其數(shù)值驗(yàn)證
發(fā)布時(shí)間:2018-02-07 11:43
本文關(guān)鍵詞: 等幾何方法 柔性轉(zhuǎn)子模型 Timoshenko梁 振動(dòng)控制 磁懸浮軸承 出處:《西安交通大學(xué)學(xué)報(bào)》2016年10期 論文類型:期刊論文
【摘要】:為了克服采用標(biāo)準(zhǔn)有限元方法建立的轉(zhuǎn)子模型自由度多不便直接用于控制器設(shè)計(jì)的問題,結(jié)合等幾何分析方法的精度高、自由度少的特點(diǎn),提出了把低階等幾何Timoshenko梁模型運(yùn)用到柔性轉(zhuǎn)子的主動(dòng)控制中,并進(jìn)行了數(shù)值驗(yàn)證。首先,給出了半離散等幾何模型及在主動(dòng)控制中作為轉(zhuǎn)子控制輸入信號(hào)的各類邊界條件;其次,分別對(duì)比了高、低階等幾何模型的奇異值響應(yīng)以及簡(jiǎn)支條件下的高、低階模型的數(shù)值解與理論解;最后,在采用磁懸浮軸承支撐和給定分布不平衡力擾動(dòng)的條件下,對(duì)轉(zhuǎn)子進(jìn)行了分散比例微分(PD)仿真控制。結(jié)果表明:所采用的低階模型的奇異值響應(yīng)在前6階臨界轉(zhuǎn)速范圍內(nèi)與高階模型基本一致;高階模型的前10階模態(tài)頻率很好地吻合了理論解,低階模型前4階模態(tài)頻率誤差在0.2%以內(nèi);高、低階等幾何梁模型下的轉(zhuǎn)子不平衡振動(dòng)位移穩(wěn)態(tài)響應(yīng)的差別很小,該誤差可看成工作轉(zhuǎn)速下的同頻小擾動(dòng)。低階等幾何梁模型在低頻范圍的高精度驗(yàn)證了該方法所得低階模型直接用于控制器設(shè)計(jì)的可行性。
[Abstract]:In order to overcome the problem that the degree of freedom of rotor model established by standard finite element method can not be directly used in controller design, combined with the characteristics of high precision and less degree of freedom of isometric analysis method, The low order isometric Timoshenko beam model is applied to the active control of the flexible rotor, and the numerical results are given. Firstly, the semi-discrete geometric model and the boundary conditions used as the input signal of the rotor control are given. Secondly, the singular value responses of high and low order geometric models and the numerical and theoretical solutions of high and low order models under simply supported conditions are compared respectively. The distributed proportional differential (PDD) simulation control of the rotor is carried out. The results show that the singular value response of the low order model is basically consistent with that of the higher order model in the first 6 order critical speed range. The first 10 order modal frequencies of the high order model are in good agreement with the theoretical solution. The error of the first 4 order modal frequencies of the lower order model is less than 0.2%, and the difference in the steady state response of the rotor unbalanced vibration displacement under the high and low order isometric beam model is very small. The error can be regarded as a small disturbance of the same frequency at the working speed, and the high accuracy of the low-order isometric beam model in the low frequency range verifies the feasibility of using the low-order model directly in the controller design.
【作者單位】: 西安交通大學(xué)能源與動(dòng)力工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(51236006) 中央高;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(XJJ2013002)
【分類號(hào)】:O347.6;O241.82
,
本文編號(hào):1494298
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1494298.html
最近更新
教材專著