基于空間算子代數(shù)理論的多體系統(tǒng)逆動(dòng)力學(xué)遞推計(jì)算
發(fā)布時(shí)間:2017-12-28 17:16
本文關(guān)鍵詞:基于空間算子代數(shù)理論的多體系統(tǒng)逆動(dòng)力學(xué)遞推計(jì)算 出處:《湖南科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》2016年03期 論文類型:期刊論文
更多相關(guān)文章: 逆動(dòng)力學(xué)算法 空間算子代數(shù) 遞推計(jì)算 多體系統(tǒng)
【摘要】:空間算子代數(shù)理論是近幾年發(fā)展起來(lái)的一種高效建模方法,應(yīng)用空間算子代數(shù)方法可以對(duì)空間多體系統(tǒng)進(jìn)行動(dòng)力學(xué)建模、分析和仿真.首先通過(guò)引入6維矢量構(gòu)建了單個(gè)剛體的空間矢量動(dòng)力學(xué)方程,隨后進(jìn)一步建立了整個(gè)鉸鏈體的逆動(dòng)力學(xué)方程,并且通過(guò)將動(dòng)力學(xué)方程投影到隨動(dòng)坐標(biāo)系的方法進(jìn)行了該逆動(dòng)力學(xué)遞推算法的軟件實(shí)現(xiàn).應(yīng)用空間算子代數(shù)理論建立的逆動(dòng)力學(xué)遞推算法具有O(N)的計(jì)算量級(jí).通過(guò)平面三連桿的典型算例的求解,與商業(yè)軟件Recurdyn~@的仿真結(jié)果進(jìn)行對(duì)比,驗(yàn)證了算法及軟件實(shí)現(xiàn)的正確性.仿真結(jié)果表明,通過(guò)空間算子代數(shù)理論建立的逆動(dòng)力學(xué)遞推算法簡(jiǎn)單、計(jì)算精度及效率均能夠滿足工程需求,可應(yīng)用于多體系統(tǒng)動(dòng)力學(xué)的運(yùn)動(dòng)控制和軌跡優(yōu)化設(shè)計(jì)中.
[Abstract]:Spatial operator algebra theory is an efficient modeling method developed in recent years, the application of spatial operator algebra method can carry out dynamic modeling, analysis and Simulation of spatial multibody systems. By introducing a 6 dimensional vector space vector of single rigid body dynamics equation was established, then inverse dynamics equation is established for the whole of the hinge body. And the kinetic equation of projection with method of moving coordinate system of the inverse dynamics of the recursive algorithm of software. The application of inverse dynamics to establish spatial operator algebra theory recursive algorithm with O (N) calculation of magnitude. Through solving typical planar three rod example, simulation and comparison with the commercial software Recurdyn~@ the results verify the correctness of the algorithm and software implementation. The simulation results show that the inverse dynamics to establish the theory of spatial operator algebra simple recursive algorithm The calculation accuracy and efficiency can meet the requirements of the engineering, and can be applied to the motion control and trajectory optimization design of multibody system dynamics.
【作者單位】: 湖南科技大學(xué)信息與電氣工程學(xué)院;清華大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)系;
【基金】:國(guó)家自然科學(xué)基金重點(diǎn)資助項(xiàng)目(60835004) 湖南省自然科學(xué)基金資助項(xiàng)目(09JJ3117,14JJ3107,14JJ3108) 教育部重點(diǎn)項(xiàng)目(211118) 湖南省科技計(jì)劃項(xiàng)目(2015JC3111,2013TZ2017,2013FJ3156,2013GK3090,B11125) 湖南科技大學(xué)研究生創(chuàng)新基金項(xiàng)目(S130022)
【分類號(hào)】:TP241;O313.7
【正文快照】: 空間多體系統(tǒng)是一種復(fù)雜并且高度耦合的非線性動(dòng)力系統(tǒng).隨著空間飛行器和空間機(jī)器人的大量應(yīng)用,使得這類系統(tǒng)的動(dòng)力學(xué)模型變得越來(lái)越復(fù)雜,因此研究效率更高、實(shí)時(shí)性能更好的動(dòng)力學(xué)算法來(lái)處理這些復(fù)雜的系統(tǒng)已經(jīng)顯得越來(lái)越重要.空間算子代數(shù)理論作為近些年發(fā)展起來(lái)的一種數(shù)學(xué)方,
本文編號(hào):1346700
本文鏈接:http://sikaile.net/kejilunwen/lxlw/1346700.html
最近更新
教材專著