應(yīng)用JKSimMet軟件優(yōu)化百花嶺選廠6~#磨礦分級回路參數(shù)試驗(yàn)研究
[Abstract]:The importance of grinding classification in mineral processing is self-evident. First of all, the capital construction cost and production and operation cost of grinding classification loop account for about 70%. Secondly, grinding classification circuit needs to provide suitable particle size products for separation operations. Therefore, it is of great significance to improve the product quality of grinding classification circuit for concentrator. In this paper, the 6 # grinding classification circuit of Jinmo Stock Baihualing Concentrator in Shaanxi Province is taken as an example. The ore is mainly valuable metal Mo, which is produced in the form of molybdate. Gangue minerals are mainly quartz and andesite. The results show that the yield of-74 渭 m in ball milling is only 19.17%, the ratio of sand return is 451.09%, and the yield of-10 渭 m in cyclone overflow is 18.52%. The distribution of particle size composition is very poor. On the basis of measuring the mechanical properties and grinding work index of the ore, it is proved that the ore has brittleness and is fragile and difficult to grind and easy to crush. The calculation results of the semi-theoretical formula of the spherical diameter also show that it is more suitable to reduce the maximum spherical diameter from 120mm to 80mm. In order to investigate the effect of reducing ball diameter and other grinding process parameters, JK software was used to simulate the process parameters. The analysis and simulation results show that the ideal grinding classification index can not be effectively realized by adjusting the grinding ball diameter and other process parameters, and only by adjusting the grinding classification process parameters at the same time can it be achieved. The re-simulation analysis shows that the optimum grinding and classification process parameters are as follows: ball diameter 80 mm, grinding concentration 80%, ball filling rate 40%, classification concentration 60%. At this time, the content of 74 渭 m in mill is 26.21%, and the ratio of sand return to sand is 297.17%. The yield of-74 渭 m in the overflow product of hydrocyclone is 62.67%, in which the yield of-10 渭 m is 16.74%, which is obviously improved compared with the grinding classification index in the industrial production site. -2mm and-8mm samples were used for verification and analysis in the laboratory. The results show that when the-2mm sample is used, the laboratory verification grinding data are in good agreement with the optimal simulation results.-8mm expanded particle size verification test grinding grade overflow product-74 渭 m up to 66.26%. Compared with the process inspection, the overflow fineness is 5.59 percentage points higher, and the fineness index is better than that of JKSimMet software simulation. While the laboratory overflow product not only improves the fineness, but also greatly reduces the content of refractory grain size, which is 2.21 percentage points lower than the process inspection data. The flotation results also confirmed that the change of particle size composition greatly improved the flotation index.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD921.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田鶴;高偉;高中華;;高壓輥磨機(jī)擠壓輥輥面?zhèn)冗吥湍ゼ夹g(shù)研究[J];礦山機(jī)械;2017年02期
2 肖剛;崔涵;;高壓輥磨機(jī)輥套熱裝及軸承液壓安裝方法應(yīng)用[J];礦山機(jī)械;2017年02期
3 馬忠山;周學(xué)其;;青海某金礦半自磨機(jī)分級設(shè)備改造研究[J];黃金科學(xué)技術(shù);2016年06期
4 許鵬云;李晶;羅衡;葉紅齊;;基于分形理論的高壓輥磨機(jī)出料粒度分布模型[J];中國礦業(yè)大學(xué)學(xué)報(bào);2016年05期
5 李柳平;陳天華;鄺志華;;武山銅礦Φ5.8×1.8半自磨機(jī)橡膠槽板的改進(jìn)[J];銅業(yè)工程;2016年03期
6 周炳;陳建文;;大型半自磨機(jī)混合充填率的研究與優(yōu)化[J];銅業(yè)工程;2016年01期
7 劉青;彭良振;王寶;韓麗輝;;介質(zhì)的尺寸和配比對球磨機(jī)磨礦粒度影響的研究[J];有色金屬(選礦部分);2015年06期
8 周意超;趙汝全;吳彩斌;石貴明;鄢發(fā)明;鄒春林;;磨礦濃度對磨礦產(chǎn)品粒度組成特性的影響[J];有色金屬科學(xué)與工程;2016年05期
9 吳彩斌;楊昊;周意超;鄢發(fā)明;趙汝全;趙捷明;劉瑜;;青海某貧硫金礦石選廠磨礦分級系統(tǒng)優(yōu)化試驗(yàn)研究[J];黃金科學(xué)技術(shù);2015年04期
10 楊采文;毛瑩博;鄧久帥;文書明;方建軍;;礦山磨礦設(shè)備的應(yīng)用及研究進(jìn)展[J];現(xiàn)代礦業(yè);2015年07期
相關(guān)碩士學(xué)位論文 前5條
1 劉瑜;柿竹園多金屬礦1500噸/日選礦廠磨礦過程優(yōu)化試驗(yàn)研究[D];江西理工大學(xué);2015年
2 向文娟;凡口礦磨礦回路最佳循環(huán)負(fù)荷試驗(yàn)與模擬研究[D];武漢科技大學(xué);2013年
3 張丹萍;河南某地云母礦選礦試驗(yàn)研究[D];武漢理工大學(xué);2013年
4 王天祥;磨礦過程運(yùn)行的智能監(jiān)督控制軟件的設(shè)計(jì)與開發(fā)[D];東北大學(xué);2012年
5 曾桂忠;磨礦介質(zhì)尺寸與形狀對鎳礦石磨礦及選別的影響研究[D];昆明理工大學(xué);2003年
,本文編號(hào):2493568
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2493568.html