煉焦中煤解離規(guī)律與浮選工藝研究
[Abstract]:The low-ash and fine coal is selected from the middle coal sorted by the coking coal, so that it can be used for smelting the coke, which not only is beneficial to the protection of the scarce coal resources in China, but also to promote the development of our national economy. According to the "Different interface sorting methods are suitable for different particle size", the selective flocculation and conventional flotation are used to study the re-selection of the coal after grinding. The sieving and floating tests show that the content of the coal in the-3mm size fraction is not big, the coal quality is more uniform, the average ash content is only 27.30%, the caking index of the coal in the-3mm size fraction is only 18.00%, and only the separation can be used for coking and the need for re-selection. The cumulative yield of the + 1.40-1.80 g/ cm ~ 3 density is up to 81.79%, which indicates that the minerals in the coal sample are closely related to the organic components, and the effective sorting can only be achieved by crushing and grinding. The characteristics of the coal in the-3mm size fraction show that the kaolinite is the main mineral, but a certain amount of pyrite, quartz and calcite are also present. Most of the clay minerals are disseminated in the cell cavity and the matrix with a particle size of about 4 m, and it is difficult to achieve complete dissociation. The grinding test shows that, when the grinding time is 5 min, the fraction content of-0.074mm has reached 84.59%, which is suitable for coarse grinding; when the grinding time is 30 min, the fine grinding efficiency is high, the content of the material entering the-0.038mm size is close to 100.00%, and the content of-0.010 mm is about 81.85%. When the ore is ground for 2 min, the ash of-0.038 mm and-0.010 mm all reach the minimum value, and the organic combustible components in the medium coal are preferentially dissociated. The grinding fineness is-0.074 mm54.66% (corresponding to the grinding time of 2 min) and-0.010 mm86.81% (corresponding to the grinding time of 40 min). When the ash content was 12.00%, the separation density was not increased, and only 0.033 g/ cm ~ 3 was raised. The grinding fineness is-0.074 mm54.66% and-0.010 mm861.81% of the surface-scanning electron microscope-energy spectrum analysis show that when the grinding fineness is-0.074 mm54.66%, the clay mineral and the organic component are still co-exist in a continuous mode. And a large amount of monomer-dissociated mineral particles and organic coal-rock monomer particles are present in the-0.010 mm size fraction. When the fineness of the grinding is-0.010 mm81.81%, the fine-grained grade is more than 50 m. After the ultrasonic dispersion, it can be observed that the mineral particles are completely dissociated from the organic combustible. The contact angle of the grinding minerals shows that the contact angle increases with the degree of dissociation, and the maximum value is 83.1 擄 (grinding fineness-0.074 mm6.7.32% (the corresponding grinding time is 3 min), at which time the surface hydrophobicity of the particles is the strongest). When the grinding fineness exceeds-0.010 mm81.85%, the mineral particles adhere to the surface of the coal particles, and the fine coal contact angle is relatively low and the fluctuation is not large. The conventional flotation test shows that the ash content of the fine coal is still higher than 15.60%, which is caused by the fine mud pollution, even when the amount of the low-dose agent (the amount of the collecting agent is 100 g/ t and the foaming agent is 50 g/ t). The optimum grinding fineness of the no-agent flotation is-0.074-35%, but due to the insufficient dissociation, the recovery of the fine coal is less than 14.00%. The optimum grinding fineness of the conventional flotation is-0.074 mm54.66-67.32%. When the grinding fineness is-0.074 mm0.66% (the corresponding grinding time is 2 min), the qualified fine coal with the yield of about 35-38% can be recovered by the rough selection + selection process. The selective flocculation and flotation test shows that both the flocculant and the dispersant are favorable to the separation effect, and the flocculant is superior to the dispersant. -0.010 mm81.85-86.81% of the best grinding fineness for selective flocculation and flotation recovery. When the grinding fineness is-0.010 mm81.81%, the recoverable yield is 43.44%, and the ash content is 11.93%, and the quantity index of the flotation refined coal is 85.09%. the coarse grinding-coarse selection process is used for treating the coal in the coking and sorting, not only has higher separation number and quality efficiency, but also can greatly reduce the grinding energy consumption and the flotation drug consumption, and simultaneously can avoid the interference of the flotation defoaming and the reduction of the subsequent filtration and dehydration problem, The results show that the coarse-fine-fine-fine flotation is the most suitable for coking.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD94;TD923
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 侯英;丁亞卓;印萬忠;姚金;;磨礦動力學(xué)參數(shù)對磨礦速度的影響[J];東北大學(xué)學(xué)報(自然科學(xué)版);2013年05期
2 賈培祥;用回歸議程預(yù)測磨礦細(xì)度[J];化工礦山技術(shù);1988年04期
3 馬少健,陳建新;磨礦優(yōu)化研究述評[J];礦山機(jī)械;2000年04期
4 趙承河;一段二閉路磨礦工藝在萬莊金礦的應(yīng)用實踐[J];黃金;2003年02期
5 段希祥,周平;強(qiáng)化針對性磨礦——當(dāng)代磨礦領(lǐng)域中的重要原則[J];昆明理工大學(xué)學(xué)報(理工版);2004年04期
6 肖慶飛;石貴明;段希祥;;云錫錫銅共生礦二、三段磨礦中鋼球尺寸的選擇[J];礦冶工程;2006年06期
7 陳廣華;;磨礦工藝調(diào)試生產(chǎn)實踐[J];黃金;2007年09期
8 郭永杰;羅春梅;曾桂忠;段希祥;;非標(biāo)準(zhǔn)、高細(xì)度兩段磨礦的介質(zhì)優(yōu)化試驗研究[J];礦產(chǎn)綜合利用;2008年06期
9 曾桂忠;羅春梅;段希祥;;優(yōu)化非標(biāo)準(zhǔn)磨礦流程磨礦效果的應(yīng)用研究[J];昆明理工大學(xué)學(xué)報(理工版);2008年03期
10 徐忠敏;莊宇凱;馮金敏;崔秋華;楊永文;;高硫鐵礦中金氰化過程中磨礦細(xì)度研究[J];中國礦山工程;2008年04期
相關(guān)會議論文 前10條
1 肖慶飛;段希祥;;磨礦機(jī)械的性能分析及發(fā)展趨勢[A];2005年全國選礦高效節(jié)能技術(shù)及設(shè)備學(xué)術(shù)研討與成果推廣交流會論文集[C];2005年
2 曾雪平;;磨礦細(xì)度對樟東坑礦區(qū)九龍腦西部礦石回收率影響的生產(chǎn)實踐[A];復(fù)雜難處理礦石選礦技術(shù)——全國選礦學(xué)術(shù)會議論文集[C];2009年
3 李健;張偉;張曉煜;;提高選礦廠磨礦質(zhì)量的探討[A];第十八屆川魯冀晉瓊粵遼七省礦業(yè)學(xué)術(shù)交流會論文集[C];2011年
4 張治元;王宇斌;孫盈;;微階段化磨礦工藝因素分析[A];第十屆全國粉體工程學(xué)術(shù)會暨相關(guān)設(shè)備、產(chǎn)品交流會論文專輯[C];2004年
5 肖慶飛;羅春梅;段希祥;王晶;;選擇性磨礦的進(jìn)展及應(yīng)用[A];2010'中國礦業(yè)科技大會論文集[C];2010年
6 王一達(dá);;鈾礦水冶中磨礦設(shè)備應(yīng)用及選型[A];全國鈾礦大基地建設(shè)學(xué)術(shù)研討會論文集(下)[C];2012年
7 何曉明;蘇興國;;齊大山選礦廠二次磨礦工藝優(yōu)化研究[A];魯冀晉瓊粵川遼七省金屬(冶金)學(xué)會第十九屆礦山學(xué)術(shù)交流會論文集(選礦技術(shù)卷)[C];2012年
8 張磊;李茂林;崔瑞;汪彬;朱曄;曾凡霞;;GN型高能磨機(jī)磨礦性能的試驗研究[A];2009中國選礦技術(shù)高峰論壇暨設(shè)備展示會論文[C];2009年
9 于濤;;一段閉路磨礦分級旋流器與分級機(jī)的工業(yè)實踐[A];第五屆全國礦山采選技術(shù)進(jìn)展報告會論文集[C];2006年
10 崔瑞;李茂林;張磊;汪彬;朱曄;曾凡霞;;GN型高能磨機(jī)基本性能研究[A];2009中國選礦技術(shù)高峰論壇暨設(shè)備展示會論文[C];2009年
相關(guān)重要報紙文章 前4條
1 韓信合;青春在鎳都閃光[N];中國有色金屬報;2007年
2 馬秀勤 吳向東;多碎少磨助生產(chǎn)上臺階[N];中國黃金報;2010年
3 特約記者 海波 通訊員 紅玲;華隆選礦公司實現(xiàn)首季開門紅[N];中國礦業(yè)報;2007年
4 本報記者 劉紀(jì)生;如何有效降低礦業(yè)成本?[N];中國冶金報;2010年
相關(guān)博士學(xué)位論文 前10條
1 侯英;鉬銅礦石的高壓輥碎磨特性和浮選分離研究[D];東北大學(xué);2014年
2 肖慶飛;兩段磨礦精確化裝補(bǔ)球方法的開發(fā)及應(yīng)用研究[D];昆明理工大學(xué);2008年
3 胡天喜;立式同軸離心磨機(jī)磨礦理論與試驗研究[D];昆明理工大學(xué);2008年
4 葉賢東;超臨速磨礦理論研究[D];昆明理工大學(xué);2002年
5 謝恒星;濕式磨礦中鋼球磨損機(jī)理與磨損規(guī)律數(shù)學(xué)模型的研究[D];中南大學(xué);2002年
6 郭永杰;非標(biāo)準(zhǔn)兩段球磨磨礦流程實施精確化裝補(bǔ)球方法的應(yīng)用研究[D];昆明理工大學(xué);2009年
7 杜茂華;一段磨礦精確化裝補(bǔ)球方法開發(fā)及其破碎機(jī)理分析和應(yīng)用效果研究[D];昆明理工大學(xué);2007年
8 馬天雨;鋁土礦連續(xù)磨礦過程建模與優(yōu)化控制研究[D];中南大學(xué);2012年
9 石貴明;降低鎳銅混合精礦氧化鎂含量的新工藝研究[D];昆明理工大學(xué);2008年
10 盧毅屏;鋁土礦選擇性磨礦—聚團(tuán)浮選脫硅研究[D];中南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉瑜;柿竹園多金屬礦1500噸/日選礦廠磨礦過程優(yōu)化試驗研究[D];江西理工大學(xué);2015年
2 喬鵬升;鮞狀赤鐵礦深度還原產(chǎn)品選礦工藝研究[D];東北大學(xué);2014年
3 張振柱;鑫源礦業(yè)黃金尾礦分離長石試驗研究[D];遼寧工程技術(shù)大學(xué);2015年
4 孫大勇;武平含銅銀多金屬礦高壓輥碎磨-浮選技術(shù)研究[D];東北大學(xué);2013年
5 程旭;一種新型異形介質(zhì)對磨礦效果的影響研究[D];東北大學(xué);2014年
6 周意超;異形介質(zhì)對鎢礦選擇性磨礦行為的研究[D];江西理工大學(xué);2016年
7 鄒春林;梅山鐵礦磨礦—分級工藝過程優(yōu)化試驗研究[D];江西理工大學(xué);2015年
8 楊昊;利用銀山礦半自磨頑石做立磨機(jī)介質(zhì)的磨礦試驗研究[D];江西理工大學(xué);2015年
9 王亞彬;提高太平掌銅礦磨礦細(xì)度研究[D];昆明理工大學(xué);2012年
10 王宇斌;微階段化磨礦技術(shù)研究[D];西安建筑科技大學(xué);2005年
,本文編號:2486989
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2486989.html