某礦采礦方法選擇及采場(chǎng)結(jié)構(gòu)參數(shù)優(yōu)化研究
[Abstract]:Tianma Shan sulfur Gold Mine has a history of mining for several decades, and its resources are drying up day by day. Due to the historical legacy, there are about 100 million m ~ 3 empty areas above the middle section of-215m, which seriously affect the production safety of the mining area. In order to realize safety, high efficiency production and full recovery of resources in the middle section of-255m, field investigation and related theoretical research are carried out first, and then value engineering theory is applied to numerical simulation. The mining method and stope structural parameters of-255m middle section are systematically analyzed and deeply studied by AHP-TOPSIS method and site monitoring method. The results are as follows: (1) after querying relevant data and on-site investigation, the research results are as follows: (1) To understand the engineering geological conditions and mining status of mines, to determine the distribution of ore bodies and mining technical conditions, to provide a scientific basis for the selection of subsequent mining methods. (2) according to the mining geological exploration data and mining technical conditions, Three suitable mining schemes, such as upward horizontal layered filling mining method, upward horizontal approach filling mining method and sublevel open-field subsequent filling mining method, are preliminarily selected. The value engineering theory is used to evaluate the mining method by experts. Seven factors affecting the advantages and disadvantages of mining methods are selected as evaluation indexes. The value coefficients of each scheme are 33. 0%, 30. 0% and 45. 0% respectively, and the sublevel open-field subsequent filling method with the highest value coefficient is selected as the mining method, and the value coefficient of each scheme is 33. 0%, 30. 0% and 45. 0% respectively. The main technical and economic indexes are calculated. (3) the complete orebody model is established by ANSYSA and FLAC_3D, and the numerical simulation is carried out, from the change of stress and displacement, the main technical and economic indexes can be calculated from the point of view of stress change and displacement change. In three aspects of plastic zone distribution, the stope stability of 12 kinds of structural parameters of different specifications is analyzed, and four schemes with good stability are selected. Then, the analytic hierarchy process (AHP) and the approximate ideal solution sorting method are used to analyze the stability of the stope from the aspects of economy and safety. Technology and other three aspects select 7 indexes to establish AHP-TOPSIS evaluation model for comprehensive evaluation, get the highest comprehensive superiority of stope structural parameters. (4) according to the optimum stope structural parameters combined with site monitoring experience, In the middle section of-255m, a complete on-site monitoring network is designed for the upper and lower plates of the orebody and the roof of the stope. According to the stress and displacement data obtained from the monitoring, the key area of stress behavior is predicted, which provides a guarantee for safe stoping in stope, and the reliability of optimizing mining scheme and stope structural parameters is verified.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD863
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉柱;;充填采礦技術(shù)應(yīng)用發(fā)展研究[J];山東工業(yè)技術(shù);2016年22期
2 林衛(wèi)星;李建波;甯瑜琳;梁超;;嶺南金礦民采區(qū)域采礦方法優(yōu)化研究[J];有色金屬(礦山部分);2016年02期
3 覃星朗;黃武勝;蔡嗣經(jīng);劉國(guó)喜;樊晉鵬;;基于價(jià)值工程原理的托庫(kù)孜巴依金礦采礦方法優(yōu)選[J];有色金屬(礦山部分);2016年02期
4 孫曉剛;丁明飛;;焦家金礦望兒山分礦高效采礦方法研究[J];中國(guó)礦山工程;2016年01期
5 陳昌民;張欽禮;陳宇;;基于VWT-GRA的采礦方法變更方案優(yōu)選[J];現(xiàn)代礦業(yè);2015年06期
6 史秀志;劉博;趙建平;阮喜清;陳海波;;頂?shù)字夭杀品桨竷?yōu)選的AHP-TOPSIS模型[J];采礦與安全工程學(xué)報(bào);2015年02期
7 譚瑋;劉方求;肖旭峰;馮壹;;破碎厚礦體機(jī)械化高效采礦方法研究與試驗(yàn)[J];采礦技術(shù);2015年02期
8 陽(yáng)雨平;謝選杰;郭民;林翔;鄧星星;;基于AHP和灰色關(guān)聯(lián)TOPSIS的殘礦回采方案優(yōu)選[J];礦冶工程;2015年01期
9 萬(wàn)孝衡;王新民;朱陽(yáng)亞;姜志良;陳秋松;;基于組合賦權(quán)TOPSIS法的采場(chǎng)結(jié)構(gòu)參數(shù)優(yōu)選[J];黃金科學(xué)技術(shù);2014年05期
10 龔劍;胡乃聯(lián);崔翔;王孝東;;基于AHP-TOPSIS評(píng)判模型的巖爆傾向性預(yù)測(cè)[J];巖石力學(xué)與工程學(xué)報(bào);2014年07期
相關(guān)博士學(xué)位論文 前2條
1 朱和玲;松軟破碎型復(fù)雜礦體開(kāi)采技術(shù)優(yōu)化與過(guò)程控制研究[D];中南大學(xué);2014年
2 楊承祥;深井金屬礦床高效開(kāi)采及地壓監(jiān)控技術(shù)研究[D];中南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 徐新木;某礦深部隔離礦柱穩(wěn)定性分析及礦體開(kāi)采效應(yīng)研究[D];江西理工大學(xué);2016年
2 陶明;寧都硫鐵礦緩傾斜礦體采場(chǎng)結(jié)構(gòu)參數(shù)及回采順序優(yōu)化研究[D];江西理工大學(xué);2015年
3 蘭明;望兒山礦區(qū)采場(chǎng)結(jié)構(gòu)參數(shù)優(yōu)化及穩(wěn)定性分析研究[D];中南大學(xué);2014年
4 汪令松;羅河鐵礦富水厚大礦體采礦方法優(yōu)化選擇研究[D];中南大學(xué);2014年
5 周彥龍;阿爾哈達(dá)礦多變礦體環(huán)境友好型回采技術(shù)研究[D];中南大學(xué);2014年
6 陳冰潔;基于有限元極限分析法的地下采場(chǎng)結(jié)構(gòu)穩(wěn)定性研究[D];中南大學(xué);2013年
7 許紅坤;采場(chǎng)結(jié)構(gòu)參數(shù)優(yōu)化及膠結(jié)礦柱可靠度分析[D];中南大學(xué);2013年
8 王星星;采場(chǎng)結(jié)構(gòu)參數(shù)智能優(yōu)化研究及可靠度分析[D];中南大學(xué);2012年
9 劉曉玲;高海拔深部鐵礦開(kāi)采工藝技術(shù)研究[D];中南大學(xué);2012年
10 李鵬祥;價(jià)值工程在建設(shè)工程項(xiàng)目中的研究與應(yīng)用[D];河北工程大學(xué);2011年
,本文編號(hào):2464309
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2464309.html