崩落體形態(tài)模型建立與數(shù)值模擬
[Abstract]:The method of sublevel caving without pillar is widely used in metal iron mines at home and abroad because of its advantages such as high mining intensity and production safety. However, this mining method is used in overlying rock mining and ore drawing, and the mining method has been widely used in metal iron mines both at home and abroad. The problem of loss and dilution has not been solved very well. Caving body is an ore pile formed in loose overlying rock after blasting by explosive ore body, and it is the object of ore drawing. Its shape has a great influence on ore loss and dilution, but it is difficult to observe the shape of caving body which occurs in overlying strata. There is also no way to determine its shape. Determining the shape of caving body has important theoretical and practical value for optimizing stope structural parameters, reducing ore loss and dilution, and improving mine economic benefit. On the basis of ore drawing theory, loose medium theory, minimum energy dissipation principle and dissipative structure theory, this paper analyzes the formation mechanism of avalanche body, establishes the mathematical model of caving body, and determines the shape of caving body. The MATLAB program is compiled to calculate the shape of caving body with different structure parameters, and the shape of caving body under different stope structure parameters is simulated by PFC2D software, and the shape of caving body under different stope structure parameters is simulated by PFC2D software. The effect of the shape of caving body on ore loss and dilution was tested in laboratory with an automatic single ore drawing system. The following results have been achieved: 1. Based on ore drawing theory, loose medium theory, minimum energy dissipation principle and dissipative structure theory, it is concluded that the caving body is an ellipsoid deficiency similar to that of loose body. The mathematical model of the caving body is established, and the solution method and steps of the shape of the caving body are determined. On this basis, the MATLAB program is compiled to calculate the shape of the caving body under different structural parameters. The calculated results accord with the actual situation of the mine. 3. PFC2D software is used to simulate the shape of caving body under different stope structure parameters. The simulation results are in good agreement with the calculated results of the model, and the feasibility of the caving body shape model is verified. 4. With the aid of the automatic single ore drawing system, the laboratory ore drawing experiment is carried out by using the different structure parameters of the model, and the experimental results show that when the section height is 18m, the distance between the approaches is 20m, When the ore step distance is 3m, the ore loss and dilution is the lowest, and the shape of the caving body is the best. This study is of guiding significance for optimizing structural parameters and reducing ore loss in mines with sublevel caving without bottom column.
【學(xué)位授予單位】:遼寧科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD853.362
【參考文獻(xiàn)】
中國期刊全文數(shù)據(jù)庫 前10條
1 曾春娜;王賀軍;李冉;熊小林;;兩類特殊橢球缺的體積與表面積[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年06期
2 張婧婧;;基于MATLAB的正弦穩(wěn)態(tài)電路仿真[J];西昌學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年04期
3 董愛民;蔣國盛;;土體顆粒破裂過程離散元模擬的新方法[J];科學(xué)技術(shù)與工程;2014年25期
4 王紅;袁鴻;夏曉舟;章青;;基于最小耗能原理的塑性應(yīng)變流動(dòng)法則[J];上海大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年04期
5 張國建;翟會(huì)超;;無底柱分段崩落法放出體、松動(dòng)體、崩落體三者關(guān)系模型[J];中國礦業(yè);2010年03期
6 杜娟;;二維顆粒流程序PFC~(2D)特點(diǎn)及其應(yīng)用現(xiàn)狀綜述[J];安徽建筑工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年05期
7 羅迎社;唐松花;周筑寶;;最小耗能原理及其在塑性力學(xué)中的應(yīng)用[J];廣西大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年02期
8 朱志根;吳愛祥;;崩落礦石塊度對(duì)放礦的影響分析[J];礦業(yè)快報(bào);2006年10期
9 唐松花;羅迎社;周筑寶;王智超;;最小功耗原理的有限元法[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);2006年03期
10 朱煥春;;PFC及其在礦山崩落開采研究中的應(yīng)用[J];巖石力學(xué)與工程學(xué)報(bào);2006年09期
中國重要會(huì)議論文全文數(shù)據(jù)庫 前1條
1 邱戰(zhàn)洪;張我華;舒小樂;應(yīng)冬柏;李磊;柯云斌;俞靜;;用最小耗能原理表達(dá)的粘-彈-塑性損傷理論[A];第一屆全國水工巖石力學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前1條
1 張洪偉;基于離散元方法的橡膠顆粒瀝青混合料疲勞性能與破冰機(jī)理研究[D];長安大學(xué);2012年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前9條
1 譚寶會(huì);錦寧礦業(yè)緩傾斜礦體無底柱分段崩落法合理回采工藝研究[D];西南科技大學(xué);2014年
2 李紅霞;基于徑向基函數(shù)配點(diǎn)法的北京平原區(qū)地下水?dāng)?shù)值模擬[D];遼寧師范大學(xué);2014年
3 李彬;武鋼程潮鐵礦采場放礦規(guī)律及放礦步距優(yōu)化研究[D];武漢科技大學(xué);2012年
4 計(jì)國賢;正常固結(jié)砂性土在循環(huán)剪切作用下變形特性的顆粒流模擬[D];浙江工業(yè)大學(xué);2010年
5 張春陽;散體礦巖移動(dòng)規(guī)律模擬及高粘礦巖助流研究[D];中南大學(xué);2009年
6 李莉;室內(nèi)懸浮顆粒物濃度與粒度圖像識(shí)別算法的研究[D];武漢理工大學(xué);2008年
7 于曉;光散射顆粒物濃度測量儀特征參數(shù)的標(biāo)定方法研究[D];南京理工大學(xué);2007年
8 項(xiàng)一凡;綜放開采頂煤三維仿真模型的研究及應(yīng)用[D];安徽理工大學(xué);2007年
9 張慎河;放礦理論及其檢驗(yàn)[D];西安建筑科技大學(xué);2001年
,本文編號(hào):2448749
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2448749.html