基于支持向量機(jī)的黃土礦區(qū)最大下沉預(yù)計模型
[Abstract]:Coal mining causes surface subsidence deformation, in which the maximum subsidence value is one of the key indexes to measure the surface subsidence deformation. The factors such as mining depth, mining height, coal seam inclination, overburden hardness, working face tendency and strike length have an important influence on the maximum subsidence value in the mining subsidence. The influence of the thickness and characteristics of loess soil layer should be taken into account in the maximum subsidence value of loess mining area. There is a complex nonlinear relationship between these factors and the maximum subsidence of the earth surface. The existing models of the maximum subsidence prediction function can not accurately reflect the complex nonlinear characteristics, so the prediction accuracy and the scope of application have great limitations. Support vector machines (SVM) can map the dimension of sample space to a feature space with high dimension by kernel function, and turn the complex nonlinear problem into a linear problem. Support vector machine (SVM) also has the penalty mechanism to eliminate the gross error data automatically, which ensures the accuracy and reliability of the model, and can provide an effective means for establishing the maximum subsidence prediction model of loess mining area in this paper. In this paper, according to the principle and characteristics of support vector machine, the construction steps of the maximum subsidence prediction model are summarized. According to this step, the penalty parameters and kernel function parameters of the model are determined by means of cross-validation. Then the optimal sample is selected by iterative method. The model is trained to determine the number of support vectors and the coefficients of the predicted model. Finally, the support vector machine regression model is constructed. According to the modeling flow, the visual program is developed based on the script language of MATLAB platform, which realizes the encapsulation of model training and application process, and provides users with simple and easy-to-understand interface form. The support vector machine regression model is compared with the existing maximum subsidence prediction model. It is found that the accuracy and reliability of the support vector machine regression model is better than other function models. In order to reveal the variation rule of the model variables, the relationship between the input variables and the maximum subsidence value is studied by taking the different values of the input variables respectively. The results show that the sensitivity of the maximum subsidence value to the three input variables, mining height, rock hardness and coal seam inclination, is higher than that of other variables. In addition, it is found that the ratio of width to depth and the ratio of soil thickness to depth are less than 0.3 and 0.35, respectively, for the samples with high prediction accuracy and large prediction deviation. On the contrary, the aspect-depth ratio and soil-thickness ratio of the samples with high accuracy are at least 0.4 脳 0.5. The support vector machine regression model constructed in this paper can be used for quantitative prediction of the maximum subsidence value of the loess mining area, and has a certain value of popularization and application.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD327
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余學(xué)義;郭文彬;趙兵朝;劉樟榮;;巨厚黃土層寬條帶開采地表移動規(guī)律及參數(shù)優(yōu)化[J];煤炭科學(xué)技術(shù);2016年04期
2 朱偉;滕永海;鄭志剛;;厚黃土下綜放高強(qiáng)度開采地表沉陷與覆巖破壞實測[J];金屬礦山;2015年04期
3 劉義新;廉玉廣;李少剛;;采動影響下厚黃土層沉陷規(guī)律研究[J];金屬礦山;2015年04期
4 鄭志剛;戴華陽;;厚黃土區(qū)大采高一次采全高地表移動變形規(guī)律[J];金屬礦山;2015年04期
5 尹光志;李銘輝;李文璞;曹偈;李星;;基于改進(jìn)BP神經(jīng)網(wǎng)絡(luò)的煤體瓦斯?jié)B透率預(yù)測模型[J];煤炭學(xué)報;2013年07期
6 靳海霞;白中科;周偉;王金滿;李帥;;黃土丘陵區(qū)井工煤礦損毀耕地復(fù)墾費用研究及實證[J];資源與產(chǎn)業(yè);2013年03期
7 張彥賓;柴華彬;鄒友峰;李德海;尹士獻(xiàn);;厚黃土覆蓋層滑坡區(qū)建筑物下條帶開采穩(wěn)定性分析[J];能源技術(shù)與管理;2012年01期
8 湯伏全;;西部厚黃土層礦區(qū)開采沉陷預(yù)計模型[J];煤炭學(xué)報;2011年S1期
9 司剛?cè)?曹暉;張彥斌;賈立新;;一種基于密度加權(quán)的最小二乘支持向量機(jī)稀疏化算法[J];西安交通大學(xué)學(xué)報;2009年10期
10 徐乃忠;戴華陽;;厚松散層條件下開采沉陷規(guī)律及控制研究現(xiàn)狀[J];煤礦安全;2008年11期
相關(guān)博士學(xué)位論文 前2條
1 郝兵元;厚黃土薄基巖煤層開采巖移及土壤質(zhì)量變異規(guī)律的研究[D];太原理工大學(xué);2009年
2 孫德山;支持向量機(jī)分類與回歸方法研究[D];中南大學(xué);2004年
相關(guān)碩士學(xué)位論文 前6條
1 于俊釗;孿生支持向量機(jī)及其優(yōu)化方法研究[D];中國礦業(yè)大學(xué);2014年
2 代巨鵬;西北厚松散層礦區(qū)開采沉陷預(yù)計與可視化研究[D];西安科技大學(xué);2011年
3 戴開文;厚黃土層開采地表沉陷災(zāi)害及其控制研究[D];西安科技大學(xué);2010年
4 孟媛媛;模糊支持向量機(jī)的研究與應(yīng)用[D];山東師范大學(xué);2006年
5 邵小健;支持向量機(jī)中若干優(yōu)化算法研究[D];山東科技大學(xué);2005年
6 辛憲會;支持向量機(jī)理論、算法與實現(xiàn)[D];中國人民解放軍信息工程大學(xué);2005年
,本文編號:2440017
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2440017.html