天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

山體賦存煤層群混合開采覆巖破斷規(guī)律及頂板控制研究

發(fā)布時(shí)間:2019-03-03 18:54
【摘要】:山體賦存煤層群開采條件下,受山體影響的原巖應(yīng)力的分布特點(diǎn)、對(duì)原巖應(yīng)力場(chǎng)的變化影響程度及深度,對(duì)于山體賦存煤層群的開采設(shè)計(jì)、頂板控制等具有重要的影響。此外,在煤層群混合開采條件下,多煤層開采的多重相互影響,是影響采場(chǎng)圍巖控制、支架合理選型的關(guān)鍵因素。因此,研究混合開采方式下覆巖破斷失穩(wěn)規(guī)律、采動(dòng)影響規(guī)律、應(yīng)力場(chǎng)分布規(guī)律和覆巖裂隙場(chǎng)分布演化規(guī)律,提出煤層群開采過程中圍巖穩(wěn)定性的控制技術(shù),對(duì)于煤層群的安全高效開采具有重要意義。采用離散元數(shù)值計(jì)算和相似材料模擬試驗(yàn)研究表明,松河煤礦地表在山體賦存條件下,依據(jù)山體對(duì)應(yīng)力分布變化的影響程度分為三個(gè)區(qū),即距地表100m以內(nèi)的明顯影響區(qū)、距地表100m~250m的影響減弱區(qū)和距地表250m以下的無影響區(qū);3#煤層賦存深度約為400m,處于山體影響區(qū)域之外;煤層群混合開采過程中,3#、9#煤層開采覆巖破斷失穩(wěn)以及底板破壞程度不受臨近煤層開采的影響,礦山壓力顯現(xiàn)表現(xiàn)為單一煤層開采礦壓顯現(xiàn)特點(diǎn),而4#、6#煤層開采分別受到3#、9#煤層開采后的圍巖運(yùn)動(dòng)的影響。采用分形幾何理論,對(duì)混合開采條件下各煤層開采后頂?shù)装迤茐某潭冗M(jìn)行定量分析。研究表明,各煤層開采后的裂采比隨著其下煤層的復(fù)合厚度的增大而增大,并受到煤層層間距的影響;煤層頂板裂隙的分形維數(shù)受到煤層厚度、煤層層間距、上覆巖層巖性等的影響,且隨煤層復(fù)合煤層厚度的增大,裂隙的分形維數(shù)增大;通過對(duì)煤層開采后裂隙分形維數(shù)進(jìn)行分析,得出4#、6#煤層的開采受臨近煤層開采后的影響較大,應(yīng)加強(qiáng)工作面頂?shù)装宓目刂;谒珊用旱V煤層群賦存條件,采用離散元數(shù)值計(jì)算研究表明,3#、9#煤層開采時(shí),工作面頂板支護(hù)設(shè)計(jì)可采用常規(guī)支護(hù)設(shè)計(jì);4#煤層開采時(shí),支護(hù)設(shè)計(jì)的重點(diǎn)是對(duì)工作面破碎頂板的控制;6#煤層開采時(shí),工作面支護(hù)設(shè)計(jì)的重點(diǎn)是加強(qiáng)對(duì)破碎頂?shù)装蹇刂。根?jù)煤層群混合開采條件下圍巖的穩(wěn)定性狀況和覆巖結(jié)構(gòu)特征,以及支架與圍巖的相互作用特點(diǎn),建立了上行、下行開采時(shí)支架與圍巖相互作用力學(xué)模型,提出了支架支護(hù)參數(shù)的確定方法。根據(jù)3#煤層工作面礦壓顯現(xiàn)特征與工作面支架阻力的確定方法,確定了ZY6400/16/34型掩護(hù)式液壓支架支護(hù)頂板;4#、6#、9#煤層平均厚度在1.2m~1.5m之間,確定選用ZY4800/09/21型液壓支架支護(hù)頂板。通過現(xiàn)場(chǎng)實(shí)測(cè)3#煤層開采過程中工作面礦壓顯現(xiàn)規(guī)律可知,支架循環(huán)末阻力平均值為4446KN,時(shí)間加權(quán)阻力平均值為3904KN,和理論計(jì)算較吻合,支架具有良好的適應(yīng)性,保障了3#煤層的安全開采。
[Abstract]:Under the condition of mining coal seam group in mountain body, the distribution characteristics of original rock stress affected by mountain body have important influence on the change degree and depth of original rock stress field, and on the mining design and roof control of mountain existing coal seam group. In addition, under the condition of mixed mining of coal seams, the multiple interaction of multi-seam mining is the key factor that affects the control of surrounding rock and the reasonable selection of supports in stope. Therefore, the failure and instability law of overlying rock under the mixed mining mode, the law of mining influence, the distribution of stress field and the law of distribution and evolution of overlying rock crack field are studied, and the control technology of surrounding rock stability in mining process of coal seam group is put forward. It is of great significance for the safe and efficient mining of coal seams. The numerical calculation of discrete element and the simulation experiment of similar materials show that the surface of Songhe Coal Mine is divided into three areas according to the influence degree of mountain body on stress distribution under the condition of mountain occurrence, that is, the obvious influence area within 100 m from the surface. The weakened area from the surface 100m~250m and the non-affected area below 250 m from the surface; The depth of 3 # coal seam is about 400 m, which is outside the influence area of mountain body; In the process of mixed mining of coal seams, the failure and instability of overburden rock and the failure degree of floor are not affected by the adjacent coal seam mining in 3 and 9 # coal seam mining. The behavior of mine pressure is characterized by the appearance of single coal seam mining pressure, while the mining pressure of 4? The 6 # coal seam mining is affected by the movement of surrounding rock after 3 # and 9 # coal seam mining, respectively. Based on fractal geometry theory, the failure degree of roof and floor after mining in different coal seams under mixed mining conditions is quantitatively analyzed. The results show that the ratio of fracture to mining increases with the increase of the composite thickness of the coal seam and is influenced by the interval between the coal layers. The fractal dimension of coalbed roof fractures is affected by the thickness of coal seam, the spacing of coal layers and the lithology of overlying strata, and the fractal dimension of cracks increases with the increase of the thickness of coal seam composite seam. Based on the analysis of fractal dimension of cracks after coal seam mining, it is concluded that the mining of 6 # coal seam is greatly affected by the mining of adjacent coal seam, and the control of top and floor of working face should be strengthened. Based on the existing conditions of coal seams in Songhe Coal Mine, the numerical calculation of discrete element shows that the roof support design of working face can be designed by conventional support when mining in coal seam 3 and 9. In 4 # coal seam mining, the key point of supporting design is to control the broken roof of the working face, and the key point of the supporting design of the face is to strengthen the control of the broken roof and floor in the mining of 6 # coal seam. According to the stability of surrounding rock and the characteristics of overlying rock structure and the interaction between support and surrounding rock under the condition of mixed mining in coal seams, a mechanical model of interaction between support and surrounding rock in upstream and downward mining is established. The method to determine the parameters of support is put forward. According to the characteristics of rock pressure behavior in coal face No. 3 and the determination method of face support resistance, the supporting roof of ZY6400/16/ 34 masked hydraulic support is determined. The average thickness of 9 # coal seam is between 1.2m~1.5m, and ZY4800/09/ 21 hydraulic support is selected to support roof. The results show that the average value of the end resistance of the support is 4446KN and the average value of the time weighted resistance is 3904KN, which is in good agreement with the theoretical calculation, and the support has good adaptability. The safe mining of No. 3 coal seam is guaranteed.
【學(xué)位授予單位】:中國(guó)礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD325;TD327.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 范曉剛;;近距離突出煤層區(qū)域驗(yàn)證方法探討[J];煤炭工程;2012年10期

2 汪長(zhǎng)明;;具有突出危險(xiǎn)性煤層群煤氣共采技術(shù)[J];潔凈煤技術(shù);2013年01期

3 張宏偉;韓軍;海立鑫;李明;喬鴻波;;近距煤層群上行開采技術(shù)研究[J];采礦與安全工程學(xué)報(bào);2013年01期

4 薛峰;;近距離煤層群上行開采可行性研究[J];煤礦現(xiàn)代化;2013年01期

5 陳新勝;急傾斜煤層群上行順序開采[J];煤礦設(shè)計(jì);1993年03期

6 武海文;;火燒區(qū)水體下煤層群安全開采實(shí)踐[J];內(nèi)蒙古煤炭經(jīng)濟(jì);2014年03期

7 王輝躍;;突出煤層群底板巖石抽放巷道布置研究[J];煤礦安全;2014年08期

8 翟路鎖,王明立,高成春;建筑物下煤層群房柱式開采的影響因素[J];煤礦開采;2003年03期

9 王術(shù)龍;馬進(jìn)功;;二次擾動(dòng)下煤層群上行開采可行性分析[J];山西煤炭;2011年12期

10 李青松;李紹泉;韓真理;;基于模糊聚類分析法的近距離突出煤層群突出危險(xiǎn)程度評(píng)價(jià)[J];煤礦安全;2013年11期

相關(guān)會(huì)議論文 前7條

1 余耀峰;張仲春;楊洪濱;;近距離煤層群上行開采的研究與應(yīng)用[A];礦山建設(shè)工程新進(jìn)展——2007全國(guó)礦山建設(shè)學(xué)術(shù)會(huì)議文集[C];2007年

2 汪理全;;煤層群上行開采技術(shù)及應(yīng)用[A];21世紀(jì)高效集約化礦井學(xué)術(shù)研討會(huì)論文集[C];2001年

3 蘇朝暉;;潘二礦煤層群開采的層位控制方法[A];2010年度淮南礦業(yè)集團(tuán)煤炭學(xué)會(huì)學(xué)術(shù)交流會(huì)論文匯編(一)·地質(zhì)專業(yè)[C];2010年

4 李偉;陳家祥;吳建國(guó);;松軟、低滲透煤層綜合抽采技術(shù)[A];全國(guó)煤礦井下安全避險(xiǎn)及瓦斯治理技術(shù)理論與實(shí)踐[C];2011年

5 翟成;衛(wèi)修君;林柏泉;;近距離煤層群采動(dòng)裂隙場(chǎng)演化規(guī)律數(shù)值模擬研究[A];中國(guó)煤炭學(xué)會(huì)煤礦安全專業(yè)委員會(huì)2009年學(xué)術(shù)研討會(huì)交流論文(部分)[C];2009年

6 黃祥寬;;急傾斜薄煤層群礦井瓦斯地質(zhì)的特殊性研究[A];瓦斯地質(zhì)研究與應(yīng)用——中國(guó)煤炭學(xué)會(huì)瓦斯地質(zhì)專業(yè)委員會(huì)第三次全國(guó)瓦斯地質(zhì)學(xué)術(shù)研討會(huì)[C];2003年

7 楊科;袁亮;劉欽節(jié);廖斌琛;孫力;涂輝;;深部近距離煤層群卸壓開采高應(yīng)力演化煤柱效應(yīng)研究[A];煤礦沖擊地壓防治的創(chuàng)新與實(shí)踐——全國(guó)防治煤礦沖擊地壓高端論壇論文匯編[C];2013年

相關(guān)重要報(bào)紙文章 前2條

1 本報(bào)記者 裴支前;讓科技成為煤礦高效安全開采的“金鑰匙”[N];江淮時(shí)報(bào);2007年

2 本報(bào)記者 牟秀源 通訊員 李幫學(xué) 彭磊;孤島奪煤 川南罕見[N];中國(guó)煤炭報(bào);2010年

相關(guān)博士學(xué)位論文 前7條

1 徐宏杰;貴州省薄—中厚煤層群煤層氣開發(fā)地質(zhì)理論與技術(shù)[D];中國(guó)礦業(yè)大學(xué);2012年

2 季文博;近距離煤層群采動(dòng)煤巖滲透特性演化規(guī)律與實(shí)測(cè)方法研究[D];中國(guó)礦業(yè)大學(xué)(北京);2013年

3 姜在炳;煤層3D動(dòng)態(tài)建模技術(shù)及應(yīng)用研究[D];煤炭科學(xué)研究總院;2008年

4 翟成;近距離煤層群采動(dòng)裂隙場(chǎng)與瓦斯流動(dòng)場(chǎng)耦合規(guī)律及防治技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2008年

5 楊兆彪;多煤層疊置條件下的煤層氣成藏作用[D];中國(guó)礦業(yè)大學(xué);2011年

6 胡永忠;山體賦存煤層群混合開采覆巖破斷規(guī)律及頂板控制研究[D];中國(guó)礦業(yè)大學(xué);2015年

7 李慶軍;近距離煤層群開采煤層自燃預(yù)測(cè)研究[D];西安科技大學(xué);2010年

相關(guān)碩士學(xué)位論文 前10條

1 章照明;火成巖侵入煤層瓦斯涌出規(guī)律研究[D];安徽理工大學(xué);2008年

2 陳敬軼;成莊煤礦瓦斯地質(zhì)圖編制與煤層氣資源量評(píng)價(jià)[D];河南理工大學(xué);2007年

3 陳彥軍;復(fù)雜圍巖條件極近距離薄煤層群開采相關(guān)技術(shù)研究[D];山東科技大學(xué);2010年

4 任碩;超臨界CO_2在低滲透煤層滲流規(guī)律研究[D];遼寧工程技術(shù)大學(xué);2013年

5 陳紹祥;極近距離下位煤層采準(zhǔn)巷道優(yōu)化布置及支護(hù)研究[D];內(nèi)蒙古科技大學(xué);2015年

6 吳敏;新安煤礦深部構(gòu)造煤采動(dòng)區(qū)煤層氣開發(fā)方案對(duì)比研究[D];中國(guó)地質(zhì)大學(xué);2013年

7 喬大良;近水平多煤層開拓模式的優(yōu)化研究[D];內(nèi)蒙古科技大學(xué);2010年

8 丁紅;多分層煤層井下水力壓裂裂縫起裂規(guī)律研究[D];重慶大學(xué);2014年

9 黃飛;薄及中厚近距離煤層群垮落法上行開采研究[D];安徽理工大學(xué);2013年

10 馮輝;賀西煤礦首采層開采后下伏煤層卸壓特征研究[D];中國(guó)礦業(yè)大學(xué);2015年

,

本文編號(hào):2434003

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2434003.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶34c6f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com