爆破振動對邊坡穩(wěn)定性影響的FA-IGA-LSSVM模型
發(fā)布時間:2019-02-10 19:03
【摘要】:為對礦山開采爆破過程中邊坡的穩(wěn)定性進行預測,將因子分析、免疫算法及最小二乘支持向量機相結合,共提取爆破振幅、主頻率、主頻率持續(xù)時間、巖石重度、粘聚力、邊坡角、邊坡高度7個影響指標.通過因子分析對樣本數(shù)據(jù)進行降維,提取出一個公共因子.利用實際測量的29組樣本數(shù)據(jù)對模型進行訓練,構建基于因子分析和IGA-LSSVM的邊坡穩(wěn)定性預測模型;采用回代估計法對模型進行檢驗,誤判率為3/29.使用其他5組樣本檢驗模型的泛化能力,同時與基本最小二乘支持向量機進行對比,結果表明:所得模型的預測精度高于基本最小二乘支持向量機,預測結果的誤判率為0.
[Abstract]:In order to predict the slope stability in mining blasting process, factor analysis, immune algorithm and least square support vector machine are combined to extract the blasting amplitude, main frequency duration, rock weight and cohesion. Angle of slope and height of slope affect 7 indexes. The dimension of sample data is reduced by factor analysis, and a common factor is extracted. The model is trained with 29 groups of measured sample data, and the slope stability prediction model based on factor analysis and IGA-LSSVM is constructed, and the model is tested by the method of back generation estimation, and the error rate is 3 / 29. The other five groups of samples were used to test the generalization ability of the model and compared with the basic least squares support vector machine. The results show that the prediction accuracy of the model is higher than that of the basic least squares support vector machine, and the error rate of the prediction result is 0.
【作者單位】: 遼寧工程技術大學工商管理學院;
【基金】:國家自然科學基金項目(51404125)
【分類號】:TD235
[Abstract]:In order to predict the slope stability in mining blasting process, factor analysis, immune algorithm and least square support vector machine are combined to extract the blasting amplitude, main frequency duration, rock weight and cohesion. Angle of slope and height of slope affect 7 indexes. The dimension of sample data is reduced by factor analysis, and a common factor is extracted. The model is trained with 29 groups of measured sample data, and the slope stability prediction model based on factor analysis and IGA-LSSVM is constructed, and the model is tested by the method of back generation estimation, and the error rate is 3 / 29. The other five groups of samples were used to test the generalization ability of the model and compared with the basic least squares support vector machine. The results show that the prediction accuracy of the model is higher than that of the basic least squares support vector machine, and the error rate of the prediction result is 0.
【作者單位】: 遼寧工程技術大學工商管理學院;
【基金】:國家自然科學基金項目(51404125)
【分類號】:TD235
【參考文獻】
相關期刊論文 前1條
1 楊帆;林琛;周綺鳳;符長虹;羅林開;;基于隨機森林的潛在k近鄰算法及其在基因表達數(shù)據(jù)分類中的應用[J];系統(tǒng)工程理論與實踐;2012年04期
【共引文獻】
相關期刊論文 前10條
1 郭東鋒;姚忠達;徐迎波;舒俊生;;基于化學成分的烤煙香型分類研究[J];湖南文理學院學報(自然科學版);2013年04期
2 王志宏;韓璐;戚磊;;隨機森林分類方法在儲層巖性識別中的應用[J];遼寧工程技術大學學報(自然科學版);2015年09期
3 李輝;馮東梅;馬寒;;路塹開挖爆破對民房危害的隨機森林預測模型[J];遼寧工程技術大學學報(自然科學版);2015年12期
4 溫廷新;張波;;露天煤礦邊坡穩(wěn)定性的隨機森林預測模型[J];科技導報;2014年Z1期
5 溫廷新;張波;邵良杉;;煤與瓦斯突出預測的隨機森林模型[J];計算機工程與應用;2014年10期
6 李飛;;森林采伐生態(tài)安全的現(xiàn)狀及對策研究[J];生物技術世界;2014年12期
7 王秀華;王建珍;;一種并行的加速K-近鄰分類方法[J];太原師范學院學報(自然科學版);2014年04期
8 張勝君;陳后金;;乳腺X線圖像結構扭曲檢測的一種新方法[J];系統(tǒng)工程理論與實踐;2013年03期
9 孫遠帥;陳W,
本文編號:2419432
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2419432.html
最近更新
教材專著