陜北侏羅紀煤低溫氧化反應性及動力學研究
[Abstract]:The metamorphism of Jurassic coal seams in northern Shaanxi is relatively low, and the spontaneous combustion is dangerous in the mining process, which not only threatens the safe production of coal mines, but also causes serious environmental pollution and waste of resources. In this paper, the oxidation reactivity and macroscopic kinetic characteristics of Jurassic coal at low temperature were studied by the methods of theoretical analysis, experimental study and mathematical calculation. The determination of the key active groups in the process of coal oxidation spontaneous combustion in the Jurassic of northern Shaanxi is of great theoretical significance for the study of the mechanism of spontaneous combustion and the study of new technologies for prevention and control. The coal quality, elemental composition and microcrystalline structure of Jurassic coal in northern Shaanxi were systematically studied by means of industrial analyzer, elemental analyzer, physicochemical adsorption instrument, X-ray diffraction instrument, scanning electron microscope and Fourier transform infrared spectrometer. The effects of specific surface area, pore size distribution, micromorphology and functional group distribution on the spontaneous combustion of Jurassic coal in northern Shaanxi were analyzed from the point of view of physical and chemical structure and oxygen adsorption characteristics. The mass and gas product changes in the process of coal oxidation and pyrolysis in the Jurassic of Northern Shaanxi were studied by thermogravimetric and infrared experiments. The results show that the oxidation process at low temperature can be divided into two stages: water evaporation, gas desorption weight loss and oxygen absorption weight gain. The characteristic temperature of spontaneous combustion and the law of gas production in two stages are determined. Based on the FWO and Kissinger methods with multiple heating rates, the kinetic parameters of the low temperature oxidation process of Jurassic coal in Northern Shaanxi were calculated, respectively. The apparent activation energy decreased with the increase of temperature in the stages of water evaporation and gas desorption. The average activation energy is 30 ~ 60 kJ/mol, and the average activation energy is 80 ~ 120kJ / mol at the stage of oxygen absorption and weight gain. The kinetic model functions of the two stages are determined by Bagchi method. By using differential scanning calorimetry (DSC), the thermal effects of the oxidation and pyrolysis of Jurassic coal in northern Shaanxi were studied. The characteristics of the thermal effects in the two stages of the low temperature oxidation process, as well as the variation of the rate of heat absorption and heat release were obtained. The characteristics of the main functional groups in the pyrolysis and oxidation process of Jurassic coal in northern Shaanxi were measured by in situ diffuse reflectance Fourier transform infrared spectrometer. The active groups in the two stages of the low temperature oxidation process of the Jurassic coal in northern Shaanxi and their changing rules were determined. Based on Pearson correlation coefficient and grey correlation analysis method, the correlation between active groups and apparent activation energy of Jurassic coal oxidation process in northern Shaanxi was calculated. It was concluded that different active groups of Jurassic coal had different effects on the two stages of low temperature oxidation process. The positive and negative correlation coefficient of Pearson and the grey correlation degree were used to quantitatively characterize the influence of different active groups on the oxidation process. The key active groups of water evaporation and gas desorption of Jurassic coal samples in North Shaanxi were determined as free hydroxyl groups, carboxyl groups, carbonyl groups and C C structures, and fatty hydrocarbon methyl and methylene groups as key active groups during oxygen absorption and weight gain. From the point of view of reactivity of key active groups, the oxidation kinetics and thermal effect characteristics of Jurassic coal in Northern Shaanxi were microscopically explained by C-O ether bond.
【學位授予單位】:西安科技大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:TD752.2
【相似文獻】
相關期刊論文 前10條
1 王德志,劉心宇,左鐵鏞;MoSi_2-Mo_5Si_3復合材料的低溫氧化行為[J];稀有金屬材料與工程;2002年01期
2 張永剛;羅懿;劉岳龍;魏開鵬;楊歡;;紅河油田輕質(zhì)原油低溫氧化實驗及動力學研究[J];油氣藏評價與開發(fā);2013年06期
3 秦廷武;鄒在幫;王春暖;;差示掃描量熱法在研究煤炭低溫氧化中的應用[J];山東礦業(yè)學院學報;1989年02期
4 E.A.Osman ,龔榮輝,王敏 ,王紅梅 ,任飛;低溫氧化原地固砂實驗[J];特種油氣藏;2001年03期
5 王蘭云;蔣曙光;梁運濤;吳征艷;;基于靜態(tài)耗氧實驗的煤低溫氧化反應動力學分析[J];礦業(yè)安全與環(huán)保;2009年01期
6 唐曉東;蘇旭;崔盈賢;楊凱;鄭存川;;空氣低溫氧化體系對稠油組成的影響[J];西南石油大學學報(自然科學版);2011年04期
7 鮑鵬程;韓曉強;馬月琴;路遙;黃曉義;武立斌;劉方方;;重度原油注空氣低溫氧化過程研究(英文)[J];化學研究;2013年04期
8 青松 ,祿千;二氧化硫的濕法低溫氧化[J];硫酸工業(yè);1974年03期
9 F.E.Huggins;G.P.Huffman;周立新;;煙煤的低溫氧化作用:它的檢測及對煤轉(zhuǎn)化的影響[J];煤炭轉(zhuǎn)化;1988年03期
10 李文,,李保慶;煤的低溫氧化與自燃[J];煤炭轉(zhuǎn)化;1995年01期
相關會議論文 前10條
1 王昭文;陳明樹;萬惠霖;;負載Pd低溫催化CO氧化研究[A];中國化學會第27屆學術年會第11分會場摘要集[C];2010年
2 陳水輝;劉艷春;文杰強;彭峰;;甲烷低溫氧化取暖器及其應用[A];中國土木工程學會燃氣分會應用專業(yè)委員會、中國土木工程學會燃氣分會燃氣供熱專業(yè)委員會2012年會論文集[C];2012年
3 陳智勇;施雯;吳成鴻;徐潤翔;;Ti6Al4V低溫氧化處理對摩擦性能的影響[A];第七屆全國表面工程學術會議暨第二屆表面工程青年學術論壇論文集(二)[C];2008年
4 董慶年;陳學藝;靳國強;顧永達;;紅外發(fā)射光譜法原位研究褐煤的低溫氧化過程[A];分子光譜學進展(Ⅸ)[C];1996年
5 譚砂礫;祁新宇;鄭華德;;一氧化碳低溫氧化稀土催化劑的制備與結(jié)構(gòu)特性分析[A];有毒化學污染物監(jiān)測與風險管理技術交流研討會論文集[C];2008年
6 邵建軍;張平;劉俊龍;徐奕德;申文杰;;制備方法對Co_3O_4/CeO_2催化劑CO低溫氧化性能的影響[A];第十三屆全國催化學術會議論文集[C];2006年
7 田鵬;劉中民;謝鵬;許磊;;含鈷磷酸鋁分子篩上烷基芳烴的低溫氧化反應研究[A];第十三屆全國催化學術會議論文集[C];2006年
8 梁飛雪;朱華青;秦張峰;王建國;;H_2O對Pd/CeO_2-TiO_2催化劑CO低溫氧化性能的促進作用及動力學研究[A];中國化工學會2008年石油化工學術年會暨北京化工研究院建院50周年學術報告會論文集[C];2008年
9 鄒旭華;齊世學;索掌懷;安立敦;李峰;;CO低溫氧化Au/Al_2O_3催化劑的原位FT-IR研究[A];第五屆全國環(huán)境催化與環(huán)境材料學術會議論文集[C];2007年
10 朱華青;梁飛雪;王輝;吳志偉;秦張峰;王建國;;含鈰復合氧化物負載催化劑的CO低溫氧化反應性能研究[A];中國化學會第27屆學術年會第11分會場摘要集[C];2010年
相關重要報紙文章 前1條
1 記者 李陳續(xù) 通訊員 楊保國;中法合作探尋自燃之謎[N];光明日報;2010年
相關博士學位論文 前4條
1 王凱;陜北侏羅紀煤低溫氧化反應性及動力學研究[D];西安科技大學;2015年
2 孔令坡;低溫氧化對煤的結(jié)構(gòu)及性能的影響研究[D];北京化工大學;2014年
3 唐一博;基于模型化合物的煤表面活性基團低溫氧化研究[D];中國礦業(yè)大學;2014年
4 何啟林;煤低溫氧化性與自燃過程的實驗及模擬的研究[D];中國礦業(yè)大學;2004年
相關碩士學位論文 前10條
1 李雙雙;混合煤種的低溫氧化機理及其污染物排放特性研究[D];華南理工大學;2015年
2 秦小文;浸水風干煤體低溫氧化特性研究[D];中國礦業(yè)大學;2015年
3 張錫佑;煤低溫氧化過程中煤氧相互作用的實驗研究[D];太原理工大學;2016年
4 趙曉明;煤低溫氧化C_2H_4生成特性實驗研究[D];太原理工大學;2016年
5 葉振興;煤的低溫氧化實驗及對模擬試驗數(shù)值模擬研究[D];安徽理工大學;2005年
6 程月;空氣低溫氧化原油組成和氣體組成變化規(guī)律研究[D];哈爾濱工程大學;2007年
7 李爭峰;提質(zhì)前后褐煤樣品低溫氧化特性的研究[D];太原理工大學;2015年
8 王彩萍;煤低溫氧化過程中活性基團的變化規(guī)律研究[D];西安科技大學;2010年
9 侯爽;煤分子活性基團低溫氧化過程研究[D];西安科技大學;2007年
10 劉長青;煤低溫氧化過程的熱分析動力學研究[D];安徽理工大學;2007年
本文編號:2335938
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2335938.html