粗顆粒礦石在深海采礦系統(tǒng)軟管中輸送特性試驗研究
[Abstract]:It is the cleanest and most efficient deep-sea mining method to raise seabed ore to sea surface by pipeline. Hose section is the key link of connecting relay bin and ore collector in deep sea mining system. It is affected by mechanical characteristics, submarine topography and mining process, and its spatial form is complex, and the matching requirements of transportation technology and parameters are relatively strict. Based on the simulation test system of hose transportation in deep sea mining, this paper analyzes the dynamic characteristics and rules of hose morphology under different working conditions, and analyzes the characteristics of hose transport parameters under different working conditions according to the spatial configuration of hose. A method for optimizing transportation parameters of deep sea mining system is presented. The main work and conclusions are as follows: (1) the influence of pump body on velocity and pressure distribution in pipeline is analyzed. The pump installed in front of the hose provides a positive pressure, and the pump installed behind the hose provides a negative pressure. When the two pumps are in series, the pipeline pressure is counteracting each other, and the maximum negative pressure is reduced to 1 / 2 of the control of the single pump. The maximum positive pressure drop is 1 / 5 of the single pump control. The flow velocity in the tube increases by about 1 / 3 of the maximum velocity compared with that of the single pump. In order to avoid the negative pressure inside the hose, the in-charge pump should be kept at a low speed, and the hose pump speed should be adjusted to meet the test requirements. (2) the space configuration of the hose and the distance between the moving distance of the collector and the hose should be determined. The relationship between flow velocity and flow characteristics. When the height of the vault is not limited by the water surface height, the height and curvature of the hose dome increase linearly with the increase of the moving distance and the flow velocity of the collecting truck. When the inner flow is the slurry, the change trend of the hose configuration is the same as that of the inner flow, but the height and curvature increase of the hose arch is smaller than that of the clear water, because the density of the slurry containing coarse particles is much larger than that of the clear water. The increase of gravity per unit fluid is larger than that of vertical impulse. Therefore, the height and curvature of hose bulge are smaller than those of clear water, and the droop of both sides is more obvious. (3) the particle size, particle volume concentration and flow velocity are established. Quantitative relationship between pipe shape and hydraulic gradient. The hydraulic gradient of coarse-particle conveying in the complex hose increases with the increase of the volume concentration of the particles, increases with the increase of the flow rate of the mixture, and decreases with the increase of the particle size, which is consistent with the research results of many horizontal and inclined pipelines. In addition, when the angle of inclination is not different, the kinetic energy of particle turbulence increases and the hydraulic gradient increases with the increase of the bend of the hose. By comparing and analyzing the relationship of resistance loss in hose and inclined pipe, using dimensional analysis method and combining with the actual situation of test, The formula for calculating the resistance loss of hose is put forward. (4) the factors affecting the safe conveying speed of coarse granular slurry and its quantitative relationship are discussed. It is found that the safe conveying speed of hose increases with the increase of slurry volume concentration and particle size, but with the increase of hose dome, the inclined angle decreases. Compared with the relation between the measured safe conveying speed of hose and the safe conveying speed of inclined straight pipe, a formula for calculating the safe conveying velocity of hose is put forward by using the dimensional analysis method and combining with the actual conditions of the test. The research results can provide a reference for the optimization of transportation parameters in deep-sea mining. In the actual mining process, the conveying speed of hose can be reasonably designed according to the position of the collector, so as to ensure that the hose is in the best state of transportation.
【學位授予單位】:中央民族大學
【學位級別】:碩士
【學位授予年份】:2016
【分類號】:TD857
【相似文獻】
相關(guān)期刊論文 前10條
1 謝龍水;深海采礦經(jīng)濟模式的研究[J];金屬礦山;1995年06期
2 朱洪前,桂衛(wèi)華,王隨平,陽春華;深海采礦車控制技術(shù)研究[J];金屬礦山;2005年09期
3 丁六懷;高宇清;;深海采礦集礦機的研究與開發(fā)[J];礦業(yè)研究與開發(fā);2006年S1期
4 謝龍水;深海采礦船設(shè)計的研究[J];有色金屬(礦山部分);1995年03期
5 簡曲,王明和;深海采礦集礦機的設(shè)計[J];礦業(yè)研究與開發(fā);1998年01期
6 徐海良;龍國鍵;梁武;;深海采礦礦石輸送軟管的力學實驗分析[J];礦業(yè)研究與開發(fā);2006年01期
7 萬步炎,高泉;深海采礦研究的技術(shù)政策探討[J];長沙礦山研究院季刊;1992年03期
8 謝龍水;;中國深海采礦[J];有色礦山;1993年05期
9 簡曲,王明和;深海采礦系統(tǒng)的設(shè)計與研究[J];世界采礦快報;1996年19期
10 劉少軍;劉暢;戴瑜;;深海采礦裝備研發(fā)的現(xiàn)狀與進展[J];機械工程學報;2014年02期
相關(guān)會議論文 前4條
1 鄒偉生;黃家楨;;深海采礦揚礦研究現(xiàn)狀與展望[A];1997中國鋼鐵年會論文集(上)[C];1997年
2 肖體兵;吳百海;;深海采礦揚礦管重載被動型升沉補償系統(tǒng)的研究[A];第四屆全國流體傳動與控制學術(shù)會議論文集[C];2006年
3 吳百海;鄒大鵬;冶占武;陳飛燕;肖奇軍;;深海采礦長行程升沉補償油缸的同步檢測與控制[A];第三屆全國流體傳動及控制工程學術(shù)會議論文集(第二卷)[C];2004年
4 楊顯成;孫伯起;益其樂;;深海采礦系統(tǒng)運動和動力學分析計算[A];第十六屆全國水動力學研討會文集[C];2002年
相關(guān)重要報紙文章 前8條
1 中國科學院教授 高峰;深海采礦時代已經(jīng)來臨?[N];企業(yè)家日報;2014年
2 記者 薛嚴;韓機器人深海采礦試驗獲成功[N];科技日報;2013年
3 本報記者 李響;攀登深海采礦制高點[N];中國國土資源報;2013年
4 曉苛;深海采礦時代悄然走近[N];中國石油報;2006年
5 涵默;日本計劃開采近海海底稀土資源[N];中國電力報;2011年
6 王英杰 陽寧;深海采礦時代還有多遠?[N];中國冶金報;2012年
7 薛嚴;韓國加緊研發(fā)海底機器人[N];科技日報;2010年
8 本報記者 華凌;寂靜海底,沉睡著一座巨大“金山”[N];科技日報;2014年
相關(guān)博士學位論文 前6條
1 胡小舟;深海采礦1000米海試系統(tǒng)主要部件布放中的水動力學問題研究[D];中南大學;2011年
2 王志;深海采礦揚礦管道工作特性的流固耦合分析與綜合評價研究[D];中南大學;2010年
3 胡瓊;深海采礦揚礦管道系統(tǒng)力學行為模擬試驗系統(tǒng)研究[D];中南大學;2011年
4 王剛;深海采礦作業(yè)過程揚礦管線系統(tǒng)空間構(gòu)形與動態(tài)特性研究[D];中南大學;2009年
5 李艷;基于三維離散元管線模型的深海采礦1000m海試系統(tǒng)整體聯(lián)動動力學研究[D];中南大學;2009年
6 陳勇;深海采礦移動機器人的魯棒控制研究[D];中南大學;2009年
相關(guān)碩士學位論文 前10條
1 彭蕓;粗顆粒礦石在深海采礦系統(tǒng)軟管中輸送特性試驗研究[D];中央民族大學;2016年
2 涂書柏;深海采礦車速度控制研究[D];中南大學;2008年
3 杜斌;深海采礦系統(tǒng)布放回收過程中水動力計算及仿真研究[D];中南大學;2009年
4 劉金書;6000m深海采礦系統(tǒng)揚礦管線的拖曳特性研究[D];中南大學;2008年
5 戴圣偉;深海采礦車行走控制技術(shù)研究[D];中南大學;2008年
6 劉建浩;深海采礦系統(tǒng)的運動響應(yīng)研究[D];上海交通大學;2012年
7 李輝;深海采礦揚礦硬管流固耦合力學行為及快速分析方 法研究[D];中南大學;2012年
8 王明峰;深海采礦船運動模擬平臺系統(tǒng)控制方法研究[D];中南大學;2012年
9 肖芳其;深海采礦揚礦軟管空間構(gòu)形和流固耦合力學分析[D];中南大學;2012年
10 陳愛黎;深海采礦揚礦電泵受力分析與計算[D];湖南大學;2012年
,本文編號:2333181
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2333181.html