黃銅礦表面性質(zhì)及CN~-在其表面吸附的密度泛函理論研究
[Abstract]:Chalcopyrite in cyanide tailings of gold and silver mines in our country has been restrained strongly by cyanide and has not been recovered effectively, which has caused serious waste of resources and environmental pollution. At present, the comprehensive utilization of copper in cyanide tailings in China is relatively low, and the research on the mechanism of cyanidation inhibition of chalcopyrite is insufficient, which brings difficulties to the recovery of copper ore. In this paper, the surface properties of chalcopyrite and the adsorption of cyanide ions on the surface of chalcopyrite are systematically studied by using the plane wave pseudopotential method based on density functional theory. The adsorption mechanism of CN~- on its surface is discussed, and the flotation test of single mineral is used. The results of density functional theory (DFT) are verified by XPS test. The results of density functional theory show that chalcopyrite crystal belongs to p-type semiconductor with direct band gap, and the valence ratio of Fe atom to Cu atom is close to 3: 1, the stability of S-Fe bond is higher than that of S-Cu bond. After structural optimization, the surface reconstruction of chalcopyrite (0.01) -M, (0.01) -S, (112) -M, (112) -S and (1.1-2) -M has been observed. Only a small surface relaxation occurred on the (11-2) -S surface, and the surface reconstruction resulted in the formation of S2- and Sn2- on the chalcopyrite surface, and the enrichment of S elements in the surface of chalcopyrite was observed in varying degrees. Chalcopyrite shows good natural floatability. Among the calculated surfaces, chalcopyrite (112) -M plane has the lowest surface energy and high thermodynamic stability. Therefore, the (112) -M plane is the most stable cleavage surface of chalcopyrite. CN~- can spontaneously adsorb on the chalcopyrite (112) -M surface, and the most stable site is the surface Fe-Fe acupoint, and the adsorption energy is up to-335.90 kJ/mol,. For chemisorption. The C atom interacts with the Fe atom on the surface of chalcopyrite. The 2s orbital of the C atom forms a covalent s bond with the 4s orbital and 4p orbital of the Fe atom, and the electrons of the 3D orbital of the Fe atom transfer to the C atom. The d-p feedback p bond is formed by occupying the antibond p orbital of the C atom space. The results of single mineral flotation show that when the concentration of sodium cyanide is low, the effect on the flotation of chalcopyrite is small. When the concentration of sodium cyanide reaches 0.8, the flotation recovery of chalcopyrite decreases to less than 20%, which has a strong inhibitory effect on the flotation of chalcopyrite. The recovery rate of chalcopyrite increases slightly with the prolongation of leaching time, which is mainly due to the dissolution of Cu~ (2) on the surface of chalcopyrite, which consumes a part of sodium cyanide and activates chalcopyrite to some extent. The results of XPS analysis show that, The valence configuration of each atom of chalcopyrite is Cu~ Fe~ (3) (S2-) 2, and there are S2- and Sn- on the surface of chalcopyrite, which is in agreement with the theoretical calculation results of surface properties of chalcopyrite. After the adsorption of sodium cyanide on the surface of chalcopyrite, the relative content of O element on the surface of chalcopyrite decreases significantly, which indicates that the adsorption of sodium cyanide hinders the interaction between oxygen molecule and mineral surface. Sodium cyanide can form a hydrophilic iron cyanide complex and copper cyanide with metal atoms on the surface of chalcopyrite, and react with Fe atoms preferentially. When the concentration of sodium cyanide is high, it can react with Cu atoms on the surface. It has significant inhibitory effect on chalcopyrite.
【學(xué)位授予單位】:江西理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD952;O647.31
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王君;陳為亮;楊凱華;彭小強(qiáng);;氰化尾渣提金預(yù)處理試驗研究[J];黃金;2016年02期
2 柳林;馮安生;王威;;氯化焙燒回收河南某黃金冶煉渣中的有價金屬[J];金屬礦山;2015年12期
3 呂翠翠;丁劍;付國燕;劉婭;魯永剛;錢鵬;葉樹峰;;氰化尾渣中有價元素回收現(xiàn)狀與展望[J];化工學(xué)報;2016年04期
4 李正要;王維維;樂坤;;氰化尾渣氯化揮發(fā)-還原焙燒一步法回收金鐵[J];金屬礦山;2015年10期
5 常耀超;徐曉輝;王云;;氰化尾渣高溫氯化回收金銀試驗研究[J];礦冶;2015年03期
6 余建文;高鵬;陳波;;極貧氰化尾渣綜合回收鉛銅試驗研究[J];礦業(yè)研究與開發(fā);2015年02期
7 王君;陳為亮;焦志良;彭小強(qiáng);;從氰化尾渣中回收金、銀的研究進(jìn)展[J];礦產(chǎn)保護(hù)與利用;2014年04期
8 韋其晉;袁朝新;劉大學(xué);徐曉輝;;貴州某金礦氰化尾渣氯化揮發(fā)回收金試驗[J];有色金屬工程;2014年03期
9 趙翠華;陳建華;吳伯增;龍賢灝;;硫化礦物表面天然疏水性的密度泛函理論研究(英文)[J];Transactions of Nonferrous Metals Society of China;2014年02期
10 吳桂葉;劉龍利;張行榮;魏明安;張杰;;計算機(jī)輔助研究黃銅礦抑制劑的分子結(jié)構(gòu)特征[J];有色金屬(選礦部分);2013年S1期
相關(guān)博士學(xué)位論文 前2條
1 焦芬;復(fù)雜銅鋅硫化礦浮選分離的基礎(chǔ)研究[D];中南大學(xué);2013年
2 藍(lán)麗紅;晶格缺陷對方鉛礦表面性質(zhì)、藥劑分子吸附及電化學(xué)行為影響的研究[D];廣西大學(xué);2012年
相關(guān)碩士學(xué)位論文 前5條
1 黃雄;受氰化鈉深度抑制的黃銅礦、鐵閃鋅礦的活化浮選及機(jī)理研究[D];江西理工大學(xué);2015年
2 孔亞鵬;氰化尾渣中有價元素的綜合利用研究[D];東北大學(xué);2014年
3 龔昶;氰化尾渣中鐵和金回收工藝研究[D];中南大學(xué);2014年
4 曾錦明;硫化銅鉬礦浮選分離及其過程的第一性原理研究[D];中南大學(xué);2012年
5 李婷;金銀精礦氰化尾渣中銅鋅等有價金屬綜合利用研究[D];江西理工大學(xué);2011年
,本文編號:2313435
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2313435.html