走向高抽巷配合傾向鉆孔抽采上鄰近層卸壓瓦斯技術(shù)
[Abstract]:In the mining of high gas coal seam group, due to the influence of mining movement, the gas in the upper adjacent layer contains gas to desorb and pour into the working face, resulting in gas exceeding in the working face, so the gas extraction of the upper adjacent layer is getting more and more attention. in the mining process of the 8210 working face of the 15 # coal seam of Yangquan Five Mine, the gas emission amount in the overlying rock accounts for 90% of the gas emission amount in the working face, the invention provides a method for discharging pressure gas by using an adjacent layer on an adjacent layer of a high-suction tunnel in the working face, and the final hole is positioned in the crack belt inside the top plate of the air inlet tunnel of the coal mining working face, and the pressure relief gas in the crack belt on the air inlet side is extracted, thereby increasing the gas extraction range of the rock discharge pressure of the overlying rock. Based on the geological conditions of rock-overlying strata in the 8210 working face and the distribution of gas-bearing strata, combined with theoretical research and numerical simulation, the redistribution of stress redistribution of rock-overlying strata, distribution of rock-overlying fracture, pressure relief gas flow, pressure relief gas extraction and extraction effect are studied. This paper provides an important reference for the gas extraction and extraction of rock-covered fracture zone. The specific research contents are as follows: (1) After the mining of the working face, the distribution of the fracture distribution in the overlying rock is studied, so as to determine the area of gas accumulation in the overlying rock, and provide the basis for moving towards the high suction lane and the inclined drilling arrangement. Firstly, a mining model of 8210 working face is established by FLAC3D simulation software. Through analyzing the plastic deformation, movement displacement and redistribution of the overlying strata after excavation of the working face, the distribution of the fracture field and the position of the pressure relief gas migration channel are finally obtained. According to the simulation results, the main occurrence of tensile failure within 40m above the top plate is mainly shear failure within 50-70m; the gradient of the internal stress of the overlying rock above the top plate 50m of the working surface is obviously reduced, and the sinking displacement suddenly decreases abruptly, and the stress relief value of the overlying rock above the top plate 70m is less than 20%. The displacement amount of subsidence is close to 0; the horizontal displacement difference is the largest in the range of 25-35m in the horizontal direction, and the variation of horizontal stress is also the largest, indicating that this area is in the longitudinal fissure development zone. Therefore, the comprehensive analysis shows that the vertical distance of the fissure gas enrichment channel is 50-70m and the horizontal distance is 25-35m. and (2) according to the distribution result of the rock-covered fracture of the working face, establishing a rock-clad fracture pressure-relief gas extraction model, and simulating the extraction effect and the extraction range of the gas extraction and the gas extraction for the high-pressure-pumping lane and the inclined borehole. First of all, using COMSOL software to build 8210 working face overburden pressure-relief gas extraction model, and according to the distribution of fracture distribution in the overlying rock and the gas emission source item, the porosity and gas flux of each source item are set, and the gas pressure cloud picture in the overlying rock before and after pumping is compared and analyzed. After 40 days of pumping, In the vertical direction, the gas pressure in the gas crack channel is reduced from 2MPa to 0.6Mpa, and the gas pressure in the horizontal direction 26m is reduced to 0. 74MPa, and the gas pressure at the periphery of the single inclined borehole is 7. 5m, and the gas pressure is reduced from 2MPa to 0.74MPa. According to the definition of effective extraction radius of borehole, it is known that the effective pumping radius of the borehole is 7.5m. (3) According to the effect of gas extraction and extraction and extraction range of the simulated overburden pressure relief, the design 8210 working face overburden is designed to move towards the high suction lane and the inclined borehole layout parameters. and the inclined drilling drilling field is arranged in the high suction lane arranged in the adjacent preparation working face, a drilling field is arranged every 30m, 9 drilling holes are arranged in each drilling field, Each drilling orifice is located at a distance of 0. 5m, the final hole is 13m, and the drilling length is 100m2/ 120m. (4) combining the simulation results and the design parameters of the 8210 working face overlying rock toward the high suction lane, calculating the gas extraction effect of the working face after the prediction is arranged towards the high suction lane and the inclined hole, and predicting that: The gas content in the effective pumping range from 18. 69m3/ m3 to 3.37m3/ m3 and the reduction of 82% in the effective pumping range of the high suction lane and the inclined borehole. The gas extraction capacity for the unit time of the high pumping lane is 40. 78m3/ min. The gas extraction capacity of the inclined drilling unit is 27,58m3/ min, and the drilling gas extraction capacity of the inclined drilling unit is 66.7% of the direction to the high suction lane. According to the gas emission amount in the working face, the gas extraction rate of the working face is 47. 8%, and the gas extraction rate of the working face is increased from 47. 8% to 77.9%, and the gas extraction is up to the standard.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD712.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉冠學(xué),唐永志,許培德,甘林堂;謝二礦高抽巷布置及使用效果分析[J];礦業(yè)安全與環(huán)保;2000年04期
2 馬其祥,徐廷奎,肖大鵬;大灣煤礦高抽巷最佳層位選擇[J];礦業(yè)安全與環(huán)保;2004年S1期
3 李青柏;;高抽巷的聯(lián)合設(shè)計及應(yīng)用[J];科技信息;2010年23期
4 王成;;頂板瓦斯高抽巷合理抽放負(fù)壓數(shù)值模擬研究[J];工業(yè)安全與環(huán)保;2011年01期
5 吳同性;趙保清;李超亞;;耿村煤礦高抽巷合理層位布置研究[J];中州煤炭;2013年03期
6 李歡;趙志軍;;耿村煤礦高抽巷氣體異常變化規(guī)律及三帶范圍研究[J];煤炭工程;2013年03期
7 馬洪芬;平太保;毛桃良;;高抽巷技術(shù)在黃巖匯煤礦的應(yīng)用研究[J];山西焦煤科技;2013年06期
8 程攀;;走向高抽巷合理層位確定的數(shù)值模擬[J];煤炭技術(shù);2014年03期
9 王旭宏,趙長春;傾向高抽巷在陽泉五礦綜放工作面的應(yīng)用[J];河北煤炭;2004年06期
10 邵廣印;;謝橋礦綜采面高抽巷布置層位探討[J];煤炭技術(shù);2008年01期
相關(guān)會議論文 前8條
1 黃文忠;周海軍;張志強(qiáng);劉東興;;建新礦1010高抽巷抽放試驗分析[A];江西省煤炭工業(yè)協(xié)會、江西省煤炭學(xué)會——2005年工作暨學(xué)術(shù)年會學(xué)術(shù)論文集[C];2005年
2 郝世俊;孫榮軍;周新莉;;大直徑拐彎鉆孔替代傾斜高抽巷抽放瓦斯的可行性研究[A];第十三屆全國探礦工程(巖土鉆掘工程)學(xué)術(shù)研討會論文專輯[C];2005年
3 原德勝;何建華;;巖石高抽巷在高瓦斯易自燃煤層綜采面的實踐[A];安全高效礦井建設(shè)與開采技術(shù)——陜西省煤炭學(xué)會學(xué)術(shù)年會論文集(2010)[C];2010年
4 鄧福保;黃文忠;周海軍;胡菊印;張志強(qiáng);劉東興;;建新礦1010高抽巷抽放瓦斯實踐[A];江西省煤炭工業(yè)協(xié)會、江西省煤炭學(xué)會第九次優(yōu)秀論文評選[C];2006年
5 郭有慧;屈慶棟;;后偽高抽巷治理綜采放頂煤工作面初采瓦斯[A];瓦斯地質(zhì)與瓦斯防治進(jìn)展[C];2007年
6 賈天讓;薛明理;史小衛(wèi);;煤層頂板高抽巷瓦斯抽放技術(shù)在“三軟”厚煤層綜放工作面的應(yīng)用[A];瓦斯地質(zhì)理論與實踐——中國煤炭學(xué)會瓦斯地質(zhì)專業(yè)委員會第五次全國瓦斯地質(zhì)學(xué)術(shù)研討會論文集[C];2005年
7 王懷新;;煤層頂板高抽巷瓦斯抽放技術(shù)在“三軟”不穩(wěn)定厚煤層綜放工作面的應(yīng)用[A];瓦斯地質(zhì)理論與實踐——中國煤炭學(xué)會瓦斯地質(zhì)專業(yè)委員會第五次全國瓦斯地質(zhì)學(xué)術(shù)研討會論文集[C];2005年
8 萬火金;;采用高抽巷解決回采工作面瓦斯超限[A];江西省煤炭工業(yè)協(xié)會、江西省煤炭學(xué)會第九次優(yōu)秀論文評選[C];2006年
相關(guān)重要報紙文章 前1條
1 陳開云;攻克國內(nèi)第一口地面瓦斯高抽巷鉆孔[N];中煤地質(zhì)報;2007年
相關(guān)碩士學(xué)位論文 前10條
1 劉明信;王莊礦9101工作面高抽巷瓦斯抽采技術(shù)研究[D];河南理工大學(xué);2015年
2 陳偉;胡家河礦高抽巷瓦斯抽采數(shù)值模擬研究[D];西安科技大學(xué);2015年
3 郭召順;亭南煤礦205工作面頂板高抽巷層位優(yōu)選研究[D];西安科技大學(xué);2015年
4 杜政賢;外錯高抽巷上行鉆孔卸壓瓦斯抽采技術(shù)研究[D];西安科技大學(xué);2016年
5 婁金福;頂板瓦斯高抽巷采動變形機(jī)理及優(yōu)化布置研究[D];中國礦業(yè)大學(xué);2008年
6 馬衛(wèi)波;余吾煤業(yè)頂板高抽巷合理布置與支護(hù)技術(shù)研究[D];中國礦業(yè)大學(xué);2014年
7 高佳佳;大采高工作面頂板走向高抽巷合理層位研究[D];河南理工大學(xué);2014年
8 王春橋;大佛寺礦走向高抽巷瓦斯抽采參數(shù)優(yōu)化研究[D];西安科技大學(xué);2013年
9 葛偉偉;大采高傾斜長壁綜采面頂板傾斜高抽巷合理位置研究[D];安徽理工大學(xué);2015年
10 王林;銅川焦坪礦區(qū)頂板走向高抽巷合理層位研究[D];河南理工大學(xué);2009年
,本文編號:2286697
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2286697.html