淺埋煤層間隔式空區(qū)下長壁綜采覆巖移動(dòng)規(guī)律研究
[Abstract]:In view of the interval mining technology of 2-2# coal seam in Nanliang Coal Mine, the study of the basic roof movement law of the coal group under the parameters of the upper and lower coal layer spacing, lithology, geomorphology and other parameters, the field investigation, laboratory experiment, theoretical calculation and numerical simulation are adopted comprehensively. By means of field measurement and analysis, the law of stress transfer under the separated coal pillar, the roof movement under the separated coal pillar and the goaf, the reasonable resistance of the support, the basic breaking mode and the law are structured. The main research results are as follows: (1) according to the geomorphological characteristics of Nanliang Coal Mine, the surface is divided into gentle geomorphology and gully geomorphology. Field observation and theoretical analysis of the normal load on the coal pillar under different geomorphological conditions, in which the slope angle of linear load on the gouge geomorphologic spaced coal pillar is the same as the dip angle of the gully. Finally, it is determined that the stable state of the spaced coal pillar is as follows: the integral stability of the spaced coal pillar, the distribution of concave plastic zone on both sides, and the stable state of the spaced goaf are as follows: the direct roof caving, the basic top bending and sinking, the goaf being unenriched, The main bearing structure in goaf is spaced coal pillar. (2) numerical simulation model of flattening and flushing geomorphology is established to verify the stress concentration propagation under coal pillar. The results show that the maximum influence depth of vertical stress is greater than the interval between layers, that is, the concentration of vertical stress in the top of the lower coal group has an effect on the roof movement of the 3-1# coal seam, that is, the roof pressure near the coal pillar is large. The pressure step distance is reduced, and the horizontal concentration stress caused by the spacer coal pillar has no effect on the roof movement of the lower coal mining. (3) using FLAC numerical simulation software, the model of flattening and gully combination is established. By fitting the vertical stress data of the monitoring points, the roof load curve of 3-1# coal seam is obtained, and the rectangular elastic thin plate model is used to obtain the boundary conditions. The first and periodic deflection and stress distribution of the roof of 3-1# coal seam under gully and flat geomorphology are obtained. (4) based on the energy release theory, the criterion of plate crack is established. The stress distribution in the plate is iterated into the criterion, and the evolution law of roof fracture in goaf is explained. At the same time, the analysis shows that the back, The method and depth of gully are important factors influencing the extension of dangerous area. (5) combined with the experiment of orthogonal proportioning scheme in laboratory and the similar simulation model of strata property in Nanliang coal mine, the characteristics of overburden rock movement in shallow buried interval gob area developed in the gully are studied. According to the similarity simulation and numerical simulation, the required working resistance of 3-1# coal seam is 8605KN, respectively. The 20304 face of south Liangshan Mine is the object of study. Comparing the regularity of rock pressure behavior between flat geomorphology and gully geomorphology, it is concluded that the interval of periodic pressure step, the maximum working resistance of the support and the coefficient of dynamic loading of the support are all larger than those of the flat geomorphology. Taking the 30107 working face below the spaced goaf as an example, the law of mine pressure of the fully mechanized coal face under the spaced coal pillar is analyzed. The average interval of the interval coal pillar under the working face is 11.43 m, in which the interval coal pillar below the interval coal pillar is less than the interval under the periodic pressure step. The spacer goaf is small below the goaf.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TD325
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉輝;范志偉;馮文生;;淺埋煤層防滅火治理措施[J];能源與節(jié)能;2011年11期
2 計(jì)宏;余學(xué)義;;淺埋煤層溝壑區(qū)塌陷災(zāi)害形成機(jī)理分析研究[J];煤炭工程;2012年06期
3 黃慶享;淺埋煤層的礦壓特征與淺埋煤層定義[J];巖石力學(xué)與工程學(xué)報(bào);2002年08期
4 紀(jì)志云;;淺埋煤層開采界定指標(biāo)取值特征分析[J];煤炭技術(shù);2006年11期
5 董愛菊;張沛;楊花娥;楊渭清;;淺埋煤層厚沙土層采動(dòng)卸荷破壞的“拱”狀數(shù)學(xué)模型[J];河南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期
6 范宗乾;王振;方華;;含水沙層下淺埋煤層的安全開采技術(shù)[J];現(xiàn)代礦業(yè);2014年01期
7 梅國棟;王云海;劉璐;;測(cè)氡法在探測(cè)淺埋煤層火源范圍中的應(yīng)用[J];煤炭科學(xué)技術(shù);2007年10期
8 邵小平;史建君;石平五;;淺埋煤層上行開采可行性相似模擬實(shí)驗(yàn)研究[J];煤炭工程;2013年05期
9 柴敬;淺埋煤層開采的大比例立體模擬研究[J];煤炭學(xué)報(bào);1998年04期
10 黃慶享,錢鳴高,石平五;淺埋煤層采場(chǎng)老頂周期來壓的結(jié)構(gòu)分析[J];煤炭學(xué)報(bào);1999年06期
相關(guān)會(huì)議論文 前10條
1 柴敬;段書武;;厚風(fēng)積沙淺埋煤層頂板災(zāi)害研究[A];巖石力學(xué)新進(jìn)展與西部開發(fā)中的巖土工程問題——中國巖石力學(xué)與工程學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文集[C];2002年
2 苗彥平;郭佐寧;黃永安;王碧清;;淺埋煤層合理支護(hù)阻力實(shí)測(cè)統(tǒng)計(jì)分析[A];安全高效礦井建設(shè)與開采技術(shù)——陜西省煤炭學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2010)[C];2010年
3 劉國磊;樊克恭;肖同強(qiáng);;山地淺埋煤層工作面支架合理工作阻力研究[A];第十二次全國巖石力學(xué)與工程學(xué)術(shù)大會(huì)會(huì)議論文摘要集[C];2012年
4 黃慶享;石平五;錢鳴高;;淺埋煤層長壁開采的礦壓特征[A];面向國民經(jīng)濟(jì)可持續(xù)發(fā)展戰(zhàn)略的巖石力學(xué)與巖石工程——中國巖石力學(xué)與工程學(xué)會(huì)第五次學(xué)術(shù)大會(huì)論文集[C];1998年
5 黃慶享;劉素花;張沛;黃克軍;;淺埋煤層局部充填開采的地表移動(dòng)規(guī)律模擬[A];安全高效礦井建設(shè)與開采技術(shù)——陜西省煤炭學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2010)[C];2010年
6 郝君;白如紅;王振華;何龍偉;;淺埋煤層綜采工作面阻力分布規(guī)律研究[A];安全高效礦井安全保障技術(shù)——陜西省煤炭學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2011)[C];2011年
7 侯彥威;高波;馬炳鎮(zhèn);王鵬;張振勇;程思遠(yuǎn);;淺埋煤層頂板富水區(qū)的直流電法探測(cè)技術(shù)[A];煤礦水害防治技術(shù)研究——陜西省煤炭學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2013)[C];2013年
8 楊治林;;初始后屈曲理論在淺埋煤層頂板穩(wěn)定性分析中的應(yīng)用[A];現(xiàn)代數(shù)學(xué)和力學(xué)(MMM-XI):第十一屆全國現(xiàn)代數(shù)學(xué)和力學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
9 黃慶享;;淺埋煤層長壁開采頂板結(jié)構(gòu)及合理支護(hù)阻力研究[A];巖石力學(xué)新進(jìn)展與西部開發(fā)中的巖土工程問題——中國巖石力學(xué)與工程學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文集[C];2002年
10 李保仁;;淺埋煤層綜采工作面深孔預(yù)裂爆破安全技術(shù)[A];安全高效礦井安全保障技術(shù)——陜西省煤炭學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(2011)[C];2011年
相關(guān)博士學(xué)位論文 前7條
1 劉新杰;淺埋煤層采場(chǎng)上覆巖層運(yùn)動(dòng)分析及支架阻力研究[D];中國礦業(yè)大學(xué)(北京);2015年
2 張付濤;淺埋煤層間隔式空區(qū)下長壁綜采覆巖移動(dòng)規(guī)律研究[D];中國礦業(yè)大學(xué);2016年
3 張沛;淺埋煤層長壁開采頂板動(dòng)態(tài)結(jié)構(gòu)研究[D];西安科技大學(xué);2012年
4 范鋼偉;淺埋煤層開采與脆弱生態(tài)保護(hù)相互響應(yīng)機(jī)理與工程實(shí)踐[D];中國礦業(yè)大學(xué);2011年
5 李鳳儀;淺埋煤層長壁開采礦壓特點(diǎn)及其安全開采界限研究[D];遼寧工程技術(shù)大學(xué);2007年
6 趙兵朝;淺埋煤層條件下基于概率積分法的保水開采識(shí)別模式研究[D];西安科技大學(xué);2009年
7 張志強(qiáng);溝谷地形對(duì)淺埋煤層工作面動(dòng)載礦壓的影響規(guī)律研究[D];中國礦業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 史久林;近距離淺埋煤層房柱下開采動(dòng)壓機(jī)理研究[D];西安科技大學(xué);2015年
2 唐朋飛;淺埋煤層大采高工作面頂板結(jié)構(gòu)及其穩(wěn)定性研究[D];西安科技大學(xué);2015年
3 陳延濤;涼水井煤礦淺埋煤層綜采工作面頂板運(yùn)動(dòng)及礦壓顯現(xiàn)規(guī)律研究[D];中國礦業(yè)大學(xué);2016年
4 閆瑞龍;淺埋煤層綜采工作面礦壓顯現(xiàn)規(guī)律研究[D];中國礦業(yè)大學(xué);2016年
5 黃森林;淺埋煤層采動(dòng)裂縫損害機(jī)理及控制方法研究[D];西安科技大學(xué);2006年
6 劉文崗;淺埋煤層砂土層載荷傳遞機(jī)理研究[D];西安科技大學(xué);2003年
7 謝大平;淺埋煤層長壁開采頂板結(jié)構(gòu)穩(wěn)定性分析[D];西安科技大學(xué);2008年
8 任艷芳;淺埋煤層長壁開采覆巖結(jié)構(gòu)特征研究[D];煤炭科學(xué)研究總院;2008年
9 李昊;淺埋煤層群開采地表漏風(fēng)規(guī)律研究[D];西安科技大學(xué);2014年
10 楊菊花;淺埋煤層頂板巖層結(jié)構(gòu)的非穩(wěn)定性態(tài)分析[D];西安科技大學(xué);2010年
,本文編號(hào):2273339
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2273339.html