基于EEMD和LSSVM的鋼絲繩輸送帶早期故障診斷研究
[Abstract]:With the development of science and technology, steel rope conveyor belt has become the main transportation equipment in coal mine, steel and metallurgical industry because of its heavy load, large transport capacity and long transmission distance. And these industries rely more and more on steel rope conveyor belt, people pay more and more attention to the running state of steel rope conveyor belt. The wire rope conveyor belt in long-term operation, once broken wire, deformation, wear and other failures, will cause the strength of the wire rope down to fracture, resulting in serious casualties and economic losses. In order to reduce the occurrence of coal mine accidents, this paper describes the development status of non-destructive testing of steel rope conveyor belt at home and abroad, analyzes the principle of wire rope conveyor belt fault and the mechanism of metal magnetic memory detection. The de-noising algorithm of metal magnetic memory signal is studied. It is proved that the least square support vector machine theory is advanced and feasible in the early fault diagnosis of steel rope conveyor belt. Firstly, the development of nondestructive testing technology of steel rope conveyor belt and the research status of metal magnetic memory technology are introduced. Based on the analysis of the causes of the fault of the steel rope conveyor belt, the mechanism of the metal magnetic memory technology and the advantages of the metal magnetic memory method in the fault detection are studied. Compared with the traditional detection method, the application of metal magnetic memory technology to the detection of steel rope conveyor belt is put forward, and the feasibility analysis is made. Secondly, the metal magnetic memory signal is very weak, so it is easy to be disturbed by the field environment. If the noise reduction is not carried out, the detection results will be seriously affected. According to the outstanding characteristics of set empirical mode decomposition in the field of signal processing, an improved set empirical mode decomposition method is proposed to reduce the noise of metal magnetic memory signal. Through the combination of empirical mode decomposition method and metal magnetic memory technology, the area of stress concentration of steel rope conveyor belt can be accurately determined. Then, several features are extracted from the noise-reducing metal magnetic memory signal and input into the least squares support vector machine (LS-SVM) early fault diagnosis system. Based on the established early fault diagnosis system, the running state of steel rope conveyor belt is identified and diagnosed. Finally, the particle swarm optimization algorithm is used to optimize the parameters of least squares support vector machine. The simulation results show that the early fault diagnosis system can recognize the state of steel rope conveyor belt and has a better accuracy.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD50
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 哈明虎;黃澍;王超;王曉麗;;直覺(jué)模糊支持向量機(jī)[J];河北大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
2 邢海燕;樊久銘;王日新;徐敏強(qiáng);張嘉鐘;;早期損傷臨界應(yīng)力狀態(tài)磁記憶檢測(cè)技術(shù)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2009年05期
3 劉繼紅;賈振紅;覃錫忠;楊杰;胡英杰;;基于權(quán)重粒子群優(yōu)化閾值的NSCT圖像去噪[J];計(jì)算機(jī)工程;2012年10期
4 劉陽(yáng)軍;趙建偉;武亞峰;魏利軍;;鋼絲繩芯膠帶無(wú)損檢測(cè)技術(shù)在酸刺溝礦應(yīng)用[J];能源技術(shù)與管理;2011年06期
5 喬鐵柱;馬俊超;趙永紅;;鋼繩芯輸送帶磁記憶檢測(cè)信號(hào)小波分析方法研究[J];煤礦機(jī)械;2009年11期
6 魯力;江慎銘;張帆;;改進(jìn)的粒子群算法求解背包問(wèn)題[J];南昌航空大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
7 李現(xiàn)國(guó);苗長(zhǎng)云;張艷;王文;;基于統(tǒng)計(jì)特征的鋼絲繩芯輸送帶故障自動(dòng)檢測(cè)[J];煤炭學(xué)報(bào);2012年07期
8 張?jiān)?張洪潮;趙嘉旭;周志民;王金龍;;高端機(jī)械裝備再制造無(wú)損檢測(cè)綜述[J];機(jī)械工程學(xué)報(bào);2013年07期
9 冷建成;劉揚(yáng);周國(guó)強(qiáng);吳澤民;閆天紅;;鐵磁性材料早期損傷的磁無(wú)損檢測(cè)方法綜述[J];化工機(jī)械;2013年02期
10 寧愛(ài)平;張雪英;;人工蜂群算法的收斂性分析[J];控制與決策;2013年10期
相關(guān)博士學(xué)位論文 前1條
1 朱曉軍;HHT變換及其在腦電信號(hào)處理中的應(yīng)用研究[D];太原理工大學(xué);2012年
本文編號(hào):2258407
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2258407.html