深海采礦揚(yáng)礦泵參數(shù)設(shè)計(jì)及模擬研究
[Abstract]:The deep sea is rich in mineral resources, which is of great practical significance to alleviate the crisis of resource shortage in China. In the mining system of deep-sea mineral resources, the lifting pump is the key link. The lifting pump should not only provide the power of conveying fluid, I. e., lift, but also make the coarse grained ore with diameter up to 20-50mm pass through. Studies have shown that the semi-axial flow pump is a feasible pump type, which can meet the requirements of large flow rate and high head. Although the two-stage pump was successfully developed in China during the "11th Five-Year Plan" period, the problem of particle plugging in the pump has not been solved fundamentally. By analyzing the matching relationship between the relative parameters of the pump body and the particle parameters, it is of great theoretical and practical significance for the design and development of the lifting pump to reveal the mechanism of solid-liquid motion of coarse particles in the lifting pump. Based on the research results of the existing lifting pump, the hydraulic design of the impeller and guide vane of the hoisting pump is carried out, and the external and internal flow characteristics of the lifting pump are studied by the combination of numerical simulation and physical model. The influence of impeller blade placement angle on the performance of lifting pump is analyzed, and the movement characteristics of different particle sizes in the pump are studied by using discrete phase numerical model and physical model, and the influence of impeller blade inlet placement angle on particle motion characteristics is analyzed. The plugging characteristics of particles in lifting pump are studied by using physical model. The specific conclusions are as follows: (1) the optimal flow rate of the lifting pump is 28 m3 / h, the head is 4.8 m, the hydraulic efficiency is 66 m, which is consistent with the design conditions, and conforms to the initial design requirements, and the numerical simulation results of the pump inlet and outlet pressure difference under the static condition of the impeller are compared with the experimental values. The error is not more than 10, which shows the validity and reliability of the mathematical model. (2) after the impeller blade inlet angle is added with a 10 擄angle of attack, the optimal working point flow rate of the lifting pump is 25 m3 / h, the lift is 4.8 m, the hydraulic efficiency is 61%, and the head and efficiency of the pump as a whole decrease. The maximum efficiency point deviates to the direction of small flow rate. (3) the particle appears spiral ascending motion in the impeller region. With the increase of particle size, the probability of particle and impeller collision increases, and the collision point approaches to the impeller head; The particles flow out of the guide vane 2-4 times in the guide vane area, and the collision position is mainly distributed in the back entrance of the guide vane, the middle part of the guide vane face and the back outlet of the guide vane. With the increase of impeller blade inlet angle, the trajectory of particles in the impeller passage is shifted to the impeller face, and it is smoother. (4) with the increase of particle size, the inlet velocity of the particle decreases and the pump time increases, and the larger inlet angle of the guide vane leads to the increase of the number of collisions between the particles and the guide vane. The larger over pump time leads to the accumulation of particles in the pump and the blockage of the pump. (5) with the decrease of the flow rate of clear water, the particles become clogged at the inlet of the guide vane. The larger the particle size is, the higher the critical flow rate of clean water is when the pump is blocked.
【學(xué)位授予單位】:中央民族大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 遠(yuǎn)藤薰 ,姚懷源;混流葉輪入口直徑對泵吸入性能的影響[J];糧油加工與食品機(jī)械;1985年08期
2 余忠;;狹長流道葉輪鑄造工藝[J];金山油化纖;1985年03期
3 黃志凌;馮勇建;;不同形狀葉輪對潛油離心泵內(nèi)數(shù)值流場的影響[J];石油礦場機(jī)械;2011年03期
4 曾忠剛;溫秀荷;索杏蘭;顧永超;江沙;龍珂;李陶;;葉輪切割技術(shù)在磁力離心泵中的應(yīng)用[J];天然氣與石油;2011年06期
5 鄭傳耀;高合金鋼葉輪的熔模精密鑄造[J];鑄工;1981年04期
6 ;副葉輪負(fù)壓軸封泥漿泵[J];有色金屬(冶煉部分);1975年10期
7 劉振春;鄒介斧;謝百之;;kYF—16浮選機(jī)[J];有色設(shè)備;1987年01期
8 曹利新;叢高偉;;三元葉輪數(shù)控加工刀位規(guī)劃誤差對其氣動力性能影響[J];大連理工大學(xué)學(xué)報(bào);2009年01期
9 任玉麗;;離心泵的工作原理及常見故障的排除[J];內(nèi)蒙古石油化工;2008年10期
10 姜鳳玖;油田用離心泵磨損機(jī)理和葉輪防磨損設(shè)計(jì)[J];石油機(jī)械;2003年08期
相關(guān)會議論文 前3條
1 何一兵;;離心泵匹配性及葉輪切割技術(shù)應(yīng)用[A];2003年11省區(qū)市機(jī)械工程學(xué)會學(xué)術(shù)會議論文集[C];2003年
2 劉松;;應(yīng)用有限元分析某葉輪配合形式對共振失效的影響[A];探索 創(chuàng)新 交流(第4集)——第四屆中國航空學(xué)會青年科技論壇文集[C];2010年
3 陳杰;黃國平;梁德旺;劉玉石;;葉片數(shù)對跨音微型斜流葉輪性能的影響[A];大型飛機(jī)關(guān)鍵技術(shù)高層論壇暨中國航空學(xué)會2007年學(xué)術(shù)年會論文集[C];2007年
相關(guān)重要報(bào)紙文章 前2條
1 ;紡織機(jī)械吸塵系統(tǒng)新型高效葉輪[N];中國紡織報(bào);2014年
2 川電;為電站風(fēng)機(jī)振動故障把脈會診[N];中國電力報(bào);2004年
相關(guān)碩士學(xué)位論文 前10條
1 蔡超;深海采礦揚(yáng)礦泵參數(shù)設(shè)計(jì)及模擬研究[D];中央民族大學(xué);2015年
2 佟連堯;除霧器清洗離心泵流場數(shù)值模擬及葉輪轉(zhuǎn)子徑向振動分析[D];華北電力大學(xué);2015年
3 王定川;核電站混凝土蝸殼循環(huán)泵水力模型中葉輪工作曲面的優(yōu)化設(shè)計(jì)[D];江蘇大學(xué);2009年
4 陳偉;軸流泵葉輪及泵站進(jìn)水設(shè)計(jì)對葉輪室進(jìn)口流態(tài)的影響[D];揚(yáng)州大學(xué);2011年
5 張江源;低比轉(zhuǎn)速葉輪無脫流的Ζ、φ條件[D];西華大學(xué);2009年
6 王秀勇;離心泵流動特征的數(shù)值分析[D];浙江大學(xué);2007年
7 姚望;800GS80新型雙蝸式離心泵性能分析及優(yōu)化[D];山東大學(xué);2014年
8 黃俊雄;離心泵流動噪聲數(shù)值仿真方法研究[D];中國科學(xué)院研究生院(工程熱物理研究所);2010年
9 趙鵬飛;閉式葉輪數(shù)控加工關(guān)鍵技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年
10 李翔;Q25H52電液循環(huán)泵的研制[D];武漢工程大學(xué);2011年
,本文編號:2234442
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2234442.html