溶劑溶解鹽湖低品位固體鉀鹽的動(dòng)力學(xué)研究
[Abstract]:In order to make full and efficient utilization of low grade potassium ore, there are some problems such as serious waste of resources and blocking of leaching channel. In order to make full use of the resource, the mining method and technological conditions should be improved. Through single factor test and orthogonal test to study the technological conditions of leaching and mining, three factors affecting the ratio of solute to liquid, the mass fraction of Na Cl in solvent and the mass fraction of Mg Cl2 were investigated. The optimum technological conditions are as follows: the ratio of solution to solid to liquid is 1: 0.5; the ratio of solvent to sodium chloride is 50% (Na Cl with its saturation is 13.24%); the mass fraction of magnesium chloride is 3%; and the dissolution time is 72 h. Under this condition, the content of KCl in ore solution after ore dissolution is more than 1.2, and the skeleton of salt ore does not collapse, and the leaching channel is open, which conforms to the technological requirements. On the basis of the above experimental conclusions, the solubility and dissolution law of K ~ (2 +) Na in Mahai Salt Mine are studied. Na Cl solution with 13.24% mass fraction (i.e. 50% saturation) and Na Cl Mg Cl2 mixed solution (13.24% Na Cl,Mg Cl2 mass fraction) were chosen as solvents, and compared with water, their dissolution kinetics equations in different solvents were obtained. The ion c-t diagram was drawn from the measured data and the dissolution kinetics curve was obtained after nonlinear fitting, and then the Runge-Kutta differential equation group and simplex optimization method were used to fit and solve the two parameters in the stumm model. The program was written by matlab. Finally, the dissolution kinetics equation of ions was determined and the dissolution law of K ~ (2 +) Na in different solvents was obtained. When Na Cl was added into the solution, the dissolution rate of K in ore solution increased obviously, and the dissolution rate of Na in ore solution decreased significantly. The dissolution rate of Mg2 + K increases obviously, the dissolution rate constant K increases from 0.1126 to 0.8749, and the dissolution rate constant K of Na in ore solution is kept at 10-10 level.
【學(xué)位授予單位】:青海大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD871.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;2甲基-2羥基丙腈水溶液中金的溶解動(dòng)力學(xué)研究[J];國(guó)外金屬礦選礦;1966年06期
2 陳肇友;固體溶解動(dòng)力學(xué)及其在耐火材料中的應(yīng)用[J];硅酸鹽學(xué)報(bào);1983年04期
3 林世英;劉金龍;;酸性含乙腈的硫酸銅水溶液中金屬銅溶解動(dòng)力學(xué)的研究[J];中南礦冶學(xué)院學(xué)報(bào);1983年03期
4 В.Н.Еременко;邵秀蘭;;鈦在鋁熔體中的溶解動(dòng)力學(xué)[J];輕金屬;1983年06期
5 張征林,舒余德,蔣漢瀛;硫酸鹽體系中硫化鎳陽(yáng)極電化學(xué)溶解動(dòng)力學(xué)[J];有色金屬;1984年03期
6 李遠(yuǎn)洲;范鵬;沈新民;黃永興;張萍;;固體石灰在轉(zhuǎn)爐渣中的溶解動(dòng)力學(xué)初步研究[J];鋼鐵;1989年11期
7 邢衛(wèi)國(guó),鐘竹前,梅光貴;黃銅礦溶解動(dòng)力學(xué)研究[J];有色金屬(冶煉部分);1990年05期
8 彭金輝,劉純鵬;微波輻照下硫化鉛礦常壓溶解動(dòng)力學(xué)[J];有色金屬;1993年01期
9 侯月明;崔振昂;;流動(dòng)熱水介質(zhì)下方解石溶解動(dòng)力學(xué)數(shù)值模擬[J];天然氣技術(shù);2010年06期
10 祁永唐,,夏樹屏,趙俊沛,李青風(fēng);鹽類溶解動(dòng)力學(xué)多參數(shù)自動(dòng)跟蹤系統(tǒng)[J];計(jì)算機(jī)與應(yīng)用化學(xué);1995年01期
相關(guān)博士學(xué)位論文 前1條
1 李德先;表生條件下鉈礦物的氧化溶解動(dòng)力學(xué)及其反應(yīng)性遷移實(shí)驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(地球化學(xué)研究所);2005年
相關(guān)碩士學(xué)位論文 前5條
1 姜虹;溶劑溶解鹽湖低品位固體鉀鹽的動(dòng)力學(xué)研究[D];青海大學(xué);2015年
2 張寒悅;大石橋菱鎂礦在乙酸中的溶解動(dòng)力學(xué)研究[D];東北大學(xué);2011年
3 徐偉;高溫高壓流動(dòng)條件下灰?guī)r溶解實(shí)驗(yàn)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2006年
4 王煒;四川盆地和塔里木盆地典型碳酸鹽巖儲(chǔ)層的溶解動(dòng)力學(xué)實(shí)驗(yàn)與儲(chǔ)層評(píng)價(jià)研究[D];中國(guó)地質(zhì)大學(xué);2011年
5 周雪嬌;V-S-H_2O系E-pH圖及V_2O_3溶解動(dòng)力學(xué)研究[D];昆明理工大學(xué);2010年
本文編號(hào):2232631
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2232631.html