天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

超凈煤分選過程中絮團(tuán)形成機(jī)理的研究

發(fā)布時(shí)間:2018-08-26 14:14
【摘要】:我國煤炭行業(yè)目前處于轉(zhuǎn)型的關(guān)鍵性時(shí)期,煤炭工作者們已經(jīng)清楚的認(rèn)識(shí)到煤炭的深度加工、精加工才是使煤炭行業(yè)重新煥發(fā)生命力的發(fā)展方向。超凈煤(Ultra-clean coal)正是煤炭清潔利用中一個(gè)具有研究價(jià)值的領(lǐng)域,根據(jù)實(shí)際生產(chǎn)使用的需要,超凈煤的灰分可以控制在1%以內(nèi)甚至更低,超低灰的特征使超凈煤不僅可以做為能源供給,也可以制備超級(jí)電容、石墨替代產(chǎn)品、電極以及應(yīng)用于其他行業(yè)領(lǐng)域。目前,基于環(huán)保和節(jié)能的角度考慮最常使用的超凈煤的加工方法是物理分選法中的疏水絮團(tuán)-浮選法。對于疏水絮凝生成絮團(tuán)已經(jīng)有了系統(tǒng)的理論研究,但是缺乏關(guān)于超凈煤制備過程中絮團(tuán)形成機(jī)理的研究。因此,論文圍繞著超凈煤制備過程,從四個(gè)方面進(jìn)行了研究和分析:探究了準(zhǔn)備階段煤樣的解離方式對煤樣幾何特征、物理化學(xué)性質(zhì)、機(jī)械力化學(xué)方面的影響;驗(yàn)證了絮團(tuán)形成過程微細(xì)煤粒疏水絮凝發(fā)生的理論基礎(chǔ);研究了能量場中能量輸入和藥劑使用制度對絮團(tuán)品質(zhì)的影響;浮選過程中絮團(tuán)的形態(tài)特征對其與氣泡的碰撞及吸附的作用。第一部分的研究針對制備超凈煤的基礎(chǔ)工作:煤樣的準(zhǔn)備。為了研究超細(xì)粉碎方式對超凈煤品質(zhì)的作用機(jī)理并選擇最適合超凈煤加工需要的超細(xì)粉碎設(shè)備,考慮到超凈煤制備超細(xì)粉碎加工需要及現(xiàn)有的超細(xì)粉碎加工設(shè)備,選用攪拌磨、膠體磨、氣流磨和球磨四種超細(xì)粉碎設(shè)備對煤樣進(jìn)行加工,對超細(xì)粉碎加工后煤樣的解離度、表面形貌、官能團(tuán)含量、比表面積、孔徑分布、表面電位等的變化進(jìn)行了進(jìn)一步的研究和分析,試驗(yàn)分析發(fā)現(xiàn)最適合的超細(xì)粉碎加設(shè)備是膠體磨。對煤粒的幾何特征分析表明,膠體磨加工后煤樣粒度分布范圍大,粗細(xì)粒含量最均勻,表面呈現(xiàn)溝狀形貌,起伏不平,無明顯斷裂痕跡,具有最大的平均粗糙度2.27nm,表明膠體磨使樣品新生成表面增多,更多的官能團(tuán)和分子簇顯露,有利于絮團(tuán)形成。對煤樣的界面化學(xué)性質(zhì)的分析表明,膠體磨加工后煤樣固液界面張力最大,為62.22m J/m2,接觸角最大,為109.70°,表明煤粒之間的水分子更容易被排開而形成絮團(tuán)。對煤樣表面的官能團(tuán)分析發(fā)現(xiàn),膠體磨加工的煤樣表面疏水基團(tuán)與親水基團(tuán)吸收峰面積相對含量的比值最大,為0.229,可以使煤樣更有效地細(xì)化,使表面官能團(tuán)更充分的暴露;膠體磨加工使煤樣具有更大的比較面積和較大的孔隙直徑,藥劑更容易在煤樣表面鋪展和吸附;同時(shí),膠體磨加工后煤樣與非極性油反應(yīng)的潤濕熱最大,為-1.384J/kg,與非極性油作用效果的最強(qiáng)烈,不僅利于非極性油藥劑在煤顆粒表面吸附和鋪展,并且提高顆粒表面的疏水性使顆粒間的油橋連接作用更緊密。對于煤樣表面機(jī)械力化學(xué)性質(zhì)的研究表明,煤樣的微晶參數(shù)呈現(xiàn)一定的規(guī)律性變化,其中d(002)由小到大依次為:膠體磨、氣流磨、攪拌磨和球磨,膠體磨和氣流磨加工后的煤樣,煤晶核堆砌高度較高,平均直徑較大。膠體磨加工后的煤樣顯現(xiàn)出更接近石墨晶格形態(tài)的特征,有較高的變質(zhì)程度相關(guān)參數(shù),利于后續(xù)絮團(tuán)的形成。此外,膠體磨在不同的酸堿環(huán)境中具有較低的Zeta電位,等電點(diǎn)略高,顆粒表面的電負(fù)性大,顆粒間的靜電排斥力大,因此在形成絮團(tuán)的初期過程需要更多的機(jī)械能的輸入才能顯現(xiàn)出優(yōu)勢。第二部分的研究是針對煤粒疏水絮凝過程的理論分析,測算絮團(tuán)的絮凝率發(fā)現(xiàn)煤樣自身的疏水性是發(fā)生疏水絮凝的基礎(chǔ),通過控制絮團(tuán)形成過程中機(jī)械能的輸入以及添加非極性油的方法強(qiáng)化煤粒的疏水絮凝效果。對煤粒發(fā)生疏水絮凝形成絮團(tuán)過程中體系內(nèi)勢能的變化過程進(jìn)行了定量計(jì)算,發(fā)現(xiàn)傳統(tǒng)的膠體穩(wěn)定性理論理論并不能合理解釋體系內(nèi)勢能變化,需要使用EDLVO理論,引入疏水勢能才能合理的解釋微粒發(fā)生絮凝的過程。在計(jì)算體系能勢能過程中,需要使用表征煤粒表面荷電作用范圍的德拜長度,而目前有關(guān)于混合物煤炭表面的該常數(shù)并沒有明確的數(shù)值,德拜長度關(guān)系到煤泥水沉降、煤樣的選擇性絮凝、疏水絮凝、煤樣的表面改性、成漿性質(zhì)的影響、微細(xì)煤粒在溶液中的分散與聚集狀態(tài)等的理論研究和計(jì)算。論文選用原子力顯微鏡(AFM)進(jìn)行力-距離曲線的測量,通過EDLVO理論反推煤樣表面的德拜長度。為了使力-距離曲線精確反映同種煤樣之間作用力隨距離之間的變化過程,采用探針修飾技術(shù),對氮化硅探針進(jìn)行修飾,使用拋光后的同種煤片做為基底,置于溶液環(huán)境中進(jìn)行試驗(yàn)測試,選用變質(zhì)程度不同的鄂爾多斯長焰煤、神木不粘煤、淮南氣煤和太西無煙煤在水溶液、酸溶液、堿溶液中分別進(jìn)行測試。試驗(yàn)發(fā)現(xiàn)樣品在不同酸堿環(huán)境中德拜長度的變化范圍在1.12-9.78×10-9m之間,對于同種煤樣,隨著溶液PH值的增加,德拜長度增加;對于不同種類的煤樣,隨著煤樣變質(zhì)程度的增加,德拜長度減小。因?yàn)殡S著溶液環(huán)境中OH-離子含量的增加,更多的H+離子向煤樣表面靠攏、聚集、吸附,導(dǎo)致形成的雙電層厚度增加;隨著煤樣變質(zhì)程度的增加,煤樣表面含氧官能團(tuán)和帶負(fù)電官能團(tuán)減少,煤樣表面的負(fù)電性降低,在相同的酸堿環(huán)境中,煤樣表面的雙電層厚度較小。第三部分的研究針對絮團(tuán)形成過程中能量輸入以及各種藥劑的添加對疏水絮凝的強(qiáng)化作用機(jī)理。有關(guān)機(jī)械能輸入作用機(jī)理的研究,通過分析微粒疏水絮凝過程體系能勢能變化曲線的方法,從理論上證明機(jī)械能為微粒提供的動(dòng)能是煤粒越過能壘發(fā)生絮凝的必不可少的條件。通過在流場中對煤粒受力進(jìn)行分析,從理論上分析了適量的機(jī)械能輸入可以促進(jìn)絮團(tuán)的生成,過量的機(jī)械能反而會(huì)破壞已經(jīng)形成的絮團(tuán),即存在最合適的機(jī)械能輸入量。使用數(shù)學(xué)量綱分析的方法,使用攪拌速度表征機(jī)械能輸入,建立了絮團(tuán)形態(tài)特征與機(jī)械能輸入量之間的關(guān)系,基于分形維數(shù)的分析方法,分析機(jī)械能輸入過程中絮團(tuán)形態(tài)的變化特征及規(guī)律。分析發(fā)現(xiàn),分形維數(shù)隨著攪拌速度的增加而增加,在2000r/min處達(dá)到峰值為1.762,隨后,攪拌速度繼續(xù)增加,分形維數(shù)迅速減少最終維持在1.74左右。由于絮團(tuán)的分形維數(shù)體現(xiàn)了絮團(tuán)的密度,即絮團(tuán)的密實(shí)程度,在攪拌速度為2000r/min處,絮團(tuán)具有最大的分形維數(shù),結(jié)構(gòu)緊實(shí)粒徑合適。多重分形分形圖譜顯示在500-2000r/min之間,f(αmax)從0.677增加到0.796,f(αmin)從1.483減少到1.202,表明小概率對象即大顆粒的數(shù)量在此階段顯著增加,大概率對象即小顆粒的數(shù)量在此階段顯著減少,在2000r/min之后,f(αmax)明顯減少后平穩(wěn),f(αmin)明顯增加后平穩(wěn),表明在此階段體系內(nèi)大絮團(tuán)碎裂成小絮團(tuán),直至絮團(tuán)的生成和碎裂達(dá)到動(dòng)態(tài)平衡。結(jié)合機(jī)械能輸入與超凈煤分選效果的試驗(yàn)結(jié)果,認(rèn)為懸浮液體系內(nèi)絮團(tuán)平均粒徑較大,大顆粒含量較高,絮團(tuán)形態(tài)較均一時(shí),最利于超凈煤的分選。有關(guān)藥劑種類對疏水絮凝影響的研究發(fā)現(xiàn)非極性油珠與煤粒之間總勢能曲線存在一個(gè)很小的能壘及一個(gè)較大的能谷,非極性油可以自發(fā)在煤粒表面順利的吸附和鋪展,此時(shí)適量的機(jī)械能的輸入可以加速非極性油和煤粒相互靠近,使之成功發(fā)生粘附。通過對比不同接觸角的煤樣添加非極性油前后聚團(tuán)效率的變化,發(fā)現(xiàn)隨著接觸角的增加,非極性對煤粒聚團(tuán)效率的促進(jìn)作用增加,在接觸角大于80°以后這種促進(jìn)作用漲幅開始變小,表明只有當(dāng)?shù)V物表面的疏水性足夠顯著時(shí),非極性油對礦物的疏水絮凝效果才能有效體現(xiàn),即非極性油對疏水絮凝促進(jìn)作用的本質(zhì)是煤粒自身的疏水性加快疏水絮凝的進(jìn)程。此外非極性油的用量與絮團(tuán)形態(tài)密切相關(guān),合適的非極性油在煤粒之間的起到橋聯(lián)作用使絮團(tuán)體積迅速增長的同時(shí),填充于絮團(tuán)之間的空隙中,使絮團(tuán)的結(jié)構(gòu)接近規(guī)則的球狀。其他藥劑添加對煤樣疏水絮凝效果的研究表明:(1)在強(qiáng)酸性溶液中,煤樣表面荷正電,隨著PH值的增加,煤樣表面荷負(fù)電并且絕對值逐漸增加,煤粒之間的分散性逐漸增加,煤樣表面Zeta電位小易發(fā)生絮凝,但同時(shí)高灰部分的礦物微粒也易發(fā)生絮凝,造成精煤產(chǎn)品產(chǎn)率增加的同時(shí)灰分也增高。通過分選試驗(yàn)發(fā)現(xiàn)超凈煤產(chǎn)率和灰分隨PH值的變化均呈現(xiàn)出一致的規(guī)律,即PH值越低,精煤灰分和產(chǎn)率均降低。通過上述分析認(rèn)為,適當(dāng)?shù)脑黾拥V漿的PH值,可以在一定程度上提高絮團(tuán)品質(zhì)達(dá)到降灰的效果,但是要同時(shí)考慮精煤產(chǎn)率的損失;(2)分散劑的使用,在一定程度上使降低了煤樣中Al、Si元素的含量,表明添加分散劑脫除了絮團(tuán)內(nèi)部分黏土類礦物,改善了絮團(tuán)的選擇性;(3)抑制劑用量對Al、Si、S三種元素的重量百分比含量的影響只有在用量達(dá)到較高程度時(shí)才能體現(xiàn),分選試驗(yàn)發(fā)現(xiàn)超凈煤產(chǎn)品的產(chǎn)率及灰分變化較小。以超凈煤制備過程中機(jī)械能的輸入條件以及藥劑用量做為因素,以超凈煤的產(chǎn)率及灰分做為響應(yīng)值,使用變質(zhì)程度不同的三種煤樣做為試驗(yàn)煤樣,基于BBD試驗(yàn)設(shè)計(jì)法進(jìn)行響應(yīng)面分析,發(fā)現(xiàn)對于超凈煤的產(chǎn)率及灰分,顯著性依次排列為:藥劑用量攪拌時(shí)間攪拌速度,交互作用的分析表明,對于超凈煤產(chǎn)率,攪拌時(shí)間與藥劑用量的交互作用起主導(dǎo)作用;對于超凈煤的灰分,攪拌速度與藥劑用量的交互作用起主導(dǎo)作用。第四部分的研究針對絮團(tuán)在浮選過程中與氣泡的礦化過程,通過建立圖像捕捉分析系統(tǒng),基于概率學(xué)統(tǒng)計(jì)分析針對疏水絮團(tuán)與氣泡的吸附及碰撞情況進(jìn)行了研究。結(jié)果表明,碰撞效率隨著絮團(tuán)粒度的增加持續(xù)增加;當(dāng)絮團(tuán)粒徑小于200μm時(shí),吸附效率隨著粒徑的增加而增大,當(dāng)絮團(tuán)粒徑大于200μm時(shí),吸附效率反而隨著粒徑的增加而減小;絮團(tuán)密度與絮團(tuán)粒度之間存在關(guān)聯(lián),在10-170μm左右的范圍內(nèi),絮團(tuán)的密度隨著粒徑的增加而增大,增幅也顯著增加,當(dāng)絮團(tuán)粒徑大于170μm后,隨著絮團(tuán)粒徑的增加,絮團(tuán)的密度開始略微下降。絮團(tuán)密度在170μm左右開始隨粒度的增加而下降,而絮團(tuán)與氣泡的吸附效率在200μm左右開始隨粒度的增加而下降,認(rèn)為兩者出現(xiàn)差異的原因是由于絮團(tuán)粒徑增加對吸附效率的促進(jìn)作用在一定程度上抵消了絮團(tuán)密度降低對吸附效率的阻礙作用。因此,絮團(tuán)與氣泡的碰撞效率主要由絮團(tuán)的粒徑?jīng)Q定,而絮團(tuán)與氣泡的吸附效率是絮團(tuán)粒度與密度共同作用的結(jié)果,其中絮團(tuán)的密度起主導(dǎo)作用。概率學(xué)統(tǒng)計(jì)分析數(shù)據(jù)表明,絮團(tuán)與氣泡的碰撞效率及概率呈現(xiàn)出相同的變化趨勢,均隨著絮團(tuán)粒度級(jí)的增加而增加,只是增幅在逐漸變緩,吸附效率及概率呈現(xiàn)先增長后減小的變化趨勢。出現(xiàn)這種現(xiàn)象的原因是,隨著絮團(tuán)粒度的增加絮團(tuán)與接觸的面積也隨之增大,碰撞次數(shù)增加。對于較大的絮團(tuán),其慣性力較大,不易受流體影響,容易與氣泡發(fā)生接觸。此外,對于下落的絮團(tuán)而言,促進(jìn)其與氣泡接觸主要是慣性力的作用,慣性力的大小取決于絮團(tuán)的粒度與密度,當(dāng)粒度相同時(shí),密度越大慣性力越大,顆粒受水力阻力的影響越小。由于隨著粒度的增加,絮團(tuán)的密度呈現(xiàn)先增加后略微減小的變化趨勢。因此,在絮團(tuán)長大到某一粒度,碰撞概率/效率的增加趨勢開始變緩,吸附概率/效率開始出現(xiàn)減小的轉(zhuǎn)折點(diǎn)。
[Abstract]:At present, the coal industry in China is in a critical period of transformation. Coal workers have clearly realized that the deep processing of coal and the fine processing are the development direction of revitalizing the coal industry. Ultra-clean coal can be used not only as an energy supply, but also as a supercapacitor, graphite substitutes, electrodes and other industries. Hydrophobic flocculation-flotation method in physical separation method. There is a systematic theoretical study on the formation of flocs by hydrophobic flocculation, but there is a lack of research on the formation mechanism of flocs in the preparation process of ultra-clean coal. Therefore, this paper studies and analyzes the preparation process of ultra-clean coal from four aspects: exploring the dissociation of coal samples in the preparation stage. The effects of different flocculation modes on the geometric characteristics, physical and chemical properties, mechanochemistry of coal samples, the theoretical basis of hydrophobic flocculation of fine coal particles during flocculation formation, the effects of energy input and reagent application system on the quality of flocs, and the collision and adsorption of flocs with bubbles during flotation were studied. In order to study the mechanism of ultra-fine pulverization on the quality of ultra-clean coal and select the most suitable ultra-fine pulverizing equipment for the processing of ultra-clean coal, considering the needs of ultra-fine pulverizing for ultra-clean coal preparation and the existing ultra-fine pulverizing processing equipment, the selection of ultra-fine pulverizing equipment is made. The dissociation degree, surface morphology, functional group content, specific surface area, pore size distribution, surface potential and other changes of ultra-fine pulverized coal samples were further studied and analyzed by stirring mill, colloid mill, pneumatic mill and ball mill. The most suitable equipment for ultra-fine pulverized coal samples was found to be ultra-fine pulverized equipment. Geometric characteristics of coal particles show that the particle size distribution of coal samples after colloidal grinding is large, the content of coarse and fine particles is the most uniform, the surface presents groove shape, uneven undulations, no obvious breaking marks, with the largest average roughness of 2.27 nm, indicating that colloidal grinding makes the sample generated more surface, more functional groups and molecular clusters appear. The analysis of the interfacial chemical properties of coal samples shows that the maximum interfacial tension is 62.22 mJ/m2, and the maximum contact angle is 109.70 degrees. This indicates that the water molecules between coal particles are easier to be separated and form flocs. The ratio of absorption peak area of water group to hydrophilic group is the largest, 0.229, which can make coal sample more refined and surface functional groups more fully exposed; colloid grinding makes coal sample have larger area and larger pore diameter, and the reagent is easier to spread and adsorb on the surface of coal sample; at the same time, coal after colloid grinding can be more effectively refined. The wetting heat of the reaction between the sample and the non-polar oil is - 1.384J/kg, and the effect of the interaction between the non-polar oil and the non-polar oil is the strongest. It is not only conducive to the adsorption and spreading of the non-polar oil on the coal particle surface, but also to the enhancement of the hydrophobicity of the particle surface, which makes the oil bridge connection between the particles closer. The micro-crystal parameters of the samples showed a certain regularity change, and the order of d(002) from small to large was: colloid mill, airflow mill, agitating mill and ball mill, colloid mill and airflow mill. The coal samples processed by colloid mill had higher stacking height and larger average diameter. In addition, the gel mill has lower Zeta potential, higher isoelectric point, larger electronegativity on the surface of particles, and greater electrostatic repulsion between particles. Therefore, more mechanical energy input is needed in the initial process of flocculation to show the advantages. According to the theoretical analysis of coal particle hydrophobic flocculation process, the calculation of flocculation rate shows that the hydrophobicity of coal sample itself is the basis of hydrophobic flocculation. By controlling the mechanical energy input in the process of flocculation formation and adding non-polar oil, the hydrophobic flocculation effect of coal particle is strengthened. It is found that the traditional colloid stability theory can not explain the change of potential energy in the system reasonably. It is necessary to use EDLVO theory and introduce hydrophobic potential energy to explain the flocculation process of particles reasonably. The Debye length of the surface charge range has no definite value about the surface constant of the coal mixture at present. The Debye length is related to the settling of slime water, the selective flocculation of coal samples, the hydrophobic flocculation, the surface modification of coal samples, the influence of slurry properties, the dispersion and aggregation of fine coal particles in solution and so on. In this paper, atomic force microscopy (AFM) is used to measure the force-distance curve, and the Debye length of coal sample surface is deduced by EDLVO theory. In order to accurately reflect the force-distance curve between the same coal samples with the change of distance, the silicon nitride probe is modified by probe modification technology, and polished. The same kind of coal slices were used as the basement and put into solution environment for testing. Ordos long flame coal, Shenmu non-stick coal, Huainan gas coal and Taixi anthracite were tested in water solution, acid solution and alkali solution respectively. The results showed that the Debye length of the samples varied from 1.12 to 9.78 in different acid-alkali environments. For the same kind of coal sample, the Debye length increases with the increase of solution PH value; for different kinds of coal sample, the Debye length decreases with the increase of coal sample metamorphism degree. With the increase of coal sample metamorphism, the oxygen-containing functional groups and charged functional groups on the surface of coal sample decrease, and the negative electrical properties on the surface of coal sample decrease. The mechanism of coagulation is studied. The kinetic energy provided by mechanical energy is proved theoretically to be the necessary condition for coagulation of coal particles crossing energy barrier by analyzing the variation curve of energy potential energy in the process of particulate hydrophobic flocculation. It is analyzed that a proper amount of mechanical energy input can promote the formation of flocs, but excessive mechanical energy will destroy the flocs that have been formed, that is, there is the most suitable mechanical energy input. The fractal dimension increases with the increase of stirring speed and reaches a peak value of 1.762 at 2000 r/min. Then, the stirring speed continues to increase, and the fractal dimension decreases rapidly and finally maintains around 1.74. The dimension reflects the density of the floc, i.e. the density of the floc. At the stirring speed of 2000 r/min, the floc has the largest fractal dimension and the compact particle size is suitable. The multifractal spectrum shows that between 500-2000 r/min, f (alpha max) increases from 0.677 to 0.796, f (alpha min) decreases from 1.483 to 1.202, indicating that the small probability object is the large particle. After 2000 R / min, f (alpha max) decreased significantly and then stabilized, and f (alpha min) increased significantly, indicating that the large flocs were fragmented into small flocs until the formation and fragmentation of flocs reached a dynamic equilibrium. The experimental results of separation efficiency of super-clean coal show that when the average size of flocs in suspension system is larger, the content of large particles is higher, and the morphology of flocs is more uniform, it is most advantageous to the separation of super-clean coal. In large energy valley, non-polar oil can spontaneously adsorb and spread on the surface of coal particles smoothly. At this time, appropriate mechanical energy input can accelerate the non-polar oil and coal particles close to each other, so that they can successfully adhere to each other. The effect of polarity on the coagulation efficiency of coal particles increases, and the increase amplitude of polarity on coagulation efficiency decreases when the contact angle is greater than 80 degrees. This indicates that only when the hydrophobicity of mineral surface is significant enough, the hydrophobic flocculation effect of non-polar oil on minerals can be effectively reflected, that is, the nature of non-polar oil on hydrophobic flocculation is coal particles themselves. In addition, the amount of non-polar oil is closely related to the morphology of the flocs. Suitable non-polar oil bridges the coal particles to make the floc volume increase rapidly, and fills the gap between the flocs, making the floc structure close to the regular sphere. The results show that: (1) in strong acidic solution, the surface of coal sample is charged positively. With the increase of PH value, the surface of coal sample is charged negatively and the absolute value increases gradually. The dispersibility of coal particles increases gradually. The Zeta potential of coal sample surface is small and easy to flocculate, but the mineral particles of high ash part are also easy to flocculate, resulting in the increase of the yield of clean coal products. The results show that the lower the PH value is, the lower the ash content and yield of clean coal are. Through the above analysis, it is concluded that increasing the PH value of pulp properly can improve the quality of flocs to a certain extent, but the same is true. When considering the loss of clean coal yield; (2) the use of dispersants, to a certain extent, reduced the content of Al, Si in coal samples, indicating that the addition of dispersants to remove some clay minerals within the floc, improved the floc selectivity; (3) inhibitor dosage on the weight percentage of Al, Si, S three elements only in the dosage reached a relatively high level. The results show that the yield and ash content of super-clean coal have little change. The input conditions of mechanical energy and dosage of reagent are taken as factors, the yield and ash content of super-clean coal as response values, and three coal samples with different deterioration degree are used as test coal samples, based on BBD test design method. Response surface analysis showed that for the yield and ash of super-clean coal, the order of significance was as follows: stirring speed of stirring time of reagent dosage, interaction analysis showed that for the yield of super-clean coal, the interaction between stirring time and reagent dosage played a leading role; for the ash of super-clean coal, the interaction between stirring speed and reagent dosage. The fourth part studies the adsorption and collision between hydrophobic flocs and bubbles by establishing an image capture analysis system based on probability statistical analysis. The results show that the collision efficiency increases with the increase of floc size. When the particle size is less than 200 micron, the adsorption efficiency increases with the increase of particle size. When the particle size is larger than 200 micron, the adsorption efficiency increases with the particle size.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)(北京)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD94

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蘇現(xiàn)波;司青;王乾;;煤變質(zhì)演化過程中的XRD響應(yīng)[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期

2 王婕;付曉恒;趙靜;楊磊;;超細(xì)粉碎對煤表面性質(zhì)及超凈煤分選的影響[J];煤炭學(xué)報(bào);2016年06期

3 王婕;付曉恒;趙靜;楊磊;潘悅怡;李文東;李亞奎;;超細(xì)粉碎對煤顆粒潤濕性及表面張力的影響[J];中國粉體技術(shù);2016年02期

4 趙秀萍;荊小兵;蘇剛;;超低灰純煤還原硫酸鈉一步法制備硫化鈉研究[J];鹽業(yè)與化工;2015年12期

5 鄒文杰;曹亦俊;孫春寶;張志軍;;煤泥選擇性絮凝浮選中顆粒間相互作用研究[J];中國礦業(yè)大學(xué)學(xué)報(bào);2015年06期

6 張小東;張鵬;;不同煤級(jí)煤分級(jí)萃取后的XRD結(jié)構(gòu)特征及其演化機(jī)理[J];煤炭學(xué)報(bào);2014年05期

7 劉永明;施建宇;鹿芹芹;郭云珠;陳瑞卿;尹大川;;基于楊氏方程的固體表面能計(jì)算研究進(jìn)展[J];材料導(dǎo)報(bào);2013年11期

8 張中威;譚業(yè)發(fā);董貴楊;楊自雙;;表面力儀的改進(jìn)及溶液中DLVO理論的驗(yàn)證[J];化學(xué)研究;2012年03期

9 陳德仁;秦志宏;陳娟;華宗琪;陳冬梅;;煤結(jié)構(gòu)模型研究及展望[J];煤化工;2011年04期

10 張明青;劉炯天;劉漢湖;王永田;;水質(zhì)硬度對煤和蒙脫石顆粒分散行為的影響[J];中國礦業(yè)大學(xué)學(xué)報(bào);2009年01期

相關(guān)博士學(xué)位論文 前1條

1 盧建軍;煤填充高分子復(fù)合材料的研究[D];太原理工大學(xué);2003年

相關(guān)碩士學(xué)位論文 前2條

1 陳舒翮;基于表面改性的摩擦電選制備超低灰煤研究[D];中國礦業(yè)大學(xué);2014年

2 梁嘉銘;采用添加劑表面改性和洗滌廢水提高低階煤成漿性的研究[D];浙江大學(xué);2010年

,

本文編號(hào):2205118

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2205118.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3f05a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com