天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于旺采充填采煤法的覆巖導(dǎo)水裂隙發(fā)育規(guī)律

發(fā)布時間:2018-08-22 15:56
【摘要】:以王臺鋪煤礦XV2309充填采煤工作面為工程背景,提出旺格維利充填采煤法。采用數(shù)值模擬、物理模擬和實驗室試驗等手段,對旺采充填采煤條件下覆巖導(dǎo)水裂隙發(fā)育規(guī)律進行了淺嘗性研究和分析,為旺格維利充填采煤方法下的保水開采提供研究基礎(chǔ)。主要研究成果如下:(1)提出了旺采充填采煤等價采高模型,得出了影響導(dǎo)水裂隙發(fā)育高度的主控因素,并對覆巖導(dǎo)水裂隙發(fā)育高度進行了預(yù)計。進行了高水膨脹材料的單軸壓縮試驗,為數(shù)值模擬及物理模擬提供基本參考。(2)研究了旺格維利充填采煤法不同開采階段覆巖移動及導(dǎo)水裂隙動態(tài)演化規(guī)律,定量得出了導(dǎo)水裂隙發(fā)育高度。相似模擬結(jié)果表明:旺采充填采煤可有效控制覆巖移動;采場巷道充填率為80%時,在充填采煤的第1階段與第2階段,覆巖導(dǎo)水裂隙基本不發(fā)育,頂板下沉量較小;在充填采煤的第3階段與第4階段,覆巖導(dǎo)水裂隙發(fā)育高度迅速增加,最大發(fā)育高度為19.8cm,最大下沉量為9mm。(3)建立了充填采煤模型和等價采高(長壁開采方法下的等價采高)模型,研究了不同等價采高與充填率時覆巖導(dǎo)水裂隙發(fā)育特征,并對比分析了等價采高模型與充填采煤模型的導(dǎo)水裂隙發(fā)育高度、覆巖位移量及應(yīng)力變化規(guī)律。研究結(jié)果表明:在覆巖導(dǎo)水裂隙發(fā)育規(guī)律方面,旺采充填采煤法不同于長壁開采。充填采煤模型中不同充填率時覆巖導(dǎo)水裂隙發(fā)育高度均小于對應(yīng)等價采高時裂隙發(fā)育高度。在充填采煤模型中,隨著充填率的降低,覆巖導(dǎo)水裂隙發(fā)育高度逐漸增加。充填率為90%時(等價采高為0.25m),導(dǎo)水裂隙發(fā)育高度為4m,充填率為0時(等價采高為2.5m),導(dǎo)水裂隙最大發(fā)育高度為43m;在等價采高模型中,隨著等價采高的增加,覆巖導(dǎo)水裂隙發(fā)育高度逐漸增加。等價采高為0.25m時,導(dǎo)水裂隙最大發(fā)育高度為8m,等價采高為2.5m時,導(dǎo)水裂隙發(fā)育高度為58m。
[Abstract]:Based on the XV2309 filling coal mining face of Wangtaipu Coal Mine, this paper puts forward the Wangeveri filling coal mining method. By means of numerical simulation, physical simulation and laboratory test, this paper makes a superficial study and analysis on the development of overburden water conductivity fissure under the condition of coal mining and filling, which provides a research basis for water conservation mining under the condition of Wanggeveli filling coal mining method. The main research results are as follows: (1) the equivalent mining height model for mining with fill and Wang mining is put forward, and the main controlling factors affecting the development height of water-conducting fractures are obtained, and the development height of water-conducting fissures in overburden rock is predicted. Uniaxial compression tests of high water expansion materials are carried out, which provide a basic reference for numerical and physical simulation. (2) the dynamic evolution of overburden rock movement and water conductivity fractures in different mining stages of Wangervili filling mining method are studied. The height of fracture development is obtained quantitatively. The similar simulation results show that the overburden movement can be effectively controlled by mining with filling and filling, and when the filling rate of roadway in stope is 80, in the first and second stages of filling coal mining, the overburden water conductivity fissure is basically not developed, and the roof subsidence is small. In the third and fourth stages of filling coal mining, the development height of overburden water conductivity fissures increases rapidly, the maximum development height is 19.8cm and the maximum subsidence is 9mmm. (3) the filling mining model and the equivalent mining height model (equivalent mining height under long wall mining method) are established. In this paper, the development characteristics of overburden water conductivity fissure with different equivalent mining height and filling rate are studied, and the development height, overburden displacement and stress variation of the equivalent mining height model and the filling coal mining model are compared and analyzed. The research results show that: in the development law of overburden water conductivity fissure, the mining method of Wang mining and filling is different from long wall mining. In the filling mining model, the development height of the overburden water conductivity fissure is lower than that of the equivalent mining height when the filling rate is different. In the filling coal mining model, with the decrease of filling rate, the development height of overburden water conductivity fissures increases gradually. The filling rate is 90 hours (equivalent mining height is 0.25 m), the development height of diversion fissure is 4 m, the filling rate is 0 (equivalent mining height is 2.5 m), the maximum development height of water conduction fissure is 43 m, in the equivalent mining height model, with the increase of equivalent mining height, The development height of overburden water conductivity fissures increases gradually. When the equivalent mining height is 0.25 m, the maximum development height of the water-conducting fissure is 8 m, and when the equivalent mining height is 2.5 m, the development height of the water-conducting fissure is 58 m.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD823.7

【參考文獻】

相關(guān)期刊論文 前5條

1 趙才智;周華強;柏建彪;強輝;;膏體充填材料強度影響因素分析[J];遼寧工程技術(shù)大學(xué)學(xué)報;2006年06期

2 李永元;周華強;秦建云;劉坤;;矸石膏體充填采煤面礦壓顯現(xiàn)規(guī)律[J];能源技術(shù)與管理;2009年03期

3 許家林;朱衛(wèi)兵;王曉振;;基于關(guān)鍵層位置的導(dǎo)水裂隙帶高度預(yù)計方法[J];煤炭學(xué)報;2012年05期

4 張明;姜福興;任艷芳;;深井大采高綜放開采微震監(jiān)測技術(shù)研究[J];煤炭科學(xué)技術(shù);2012年12期

5 施龍青;辛恒奇;翟培合;李守春;劉同彬;閆勇;衛(wèi)文學(xué);;大采深條件下導(dǎo)水裂隙帶高度計算研究[J];中國礦業(yè)大學(xué)學(xué)報;2012年01期

,

本文編號:2197589

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2197589.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c2936***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com