加卸載圍壓條件下巖石峰后力學(xué)特性試驗研究
[Abstract]:The post-peak mechanical properties of rock play a key role in giving full play to the bearing capacity of rock mass to maintain the stability of underground engineering and to reveal the evolution and development of plastic zone in rock mass and the optimum design of rock mass engineering support. Therefore, it is very important for engineering design to study the post-peak mechanical properties of rock under loading and unloading confining pressure. In this paper, through loading and unloading confining pressure test of rock samples at the stage of residual strength, the mechanical properties of rock after peak are studied, and the mechanism of elastic slip after peak is put forward. Based on this, a numerical analysis model is established to analyze the deformation of surrounding rock in tunnel. The main research contents and conclusions are as follows: (1) in conventional triaxial tests, the residual strength of rock is affected by peak strength and confining pressure, and it is more sensitive to confining pressure under low confining pressure, which is due to the fact that there is only a small amount of contact between fracture surfaces under low confining pressure. With the increase of confining pressure, the contact surface becomes regular and the area increases, the contact action increases, and the stress-strain relationship changes from brittle drop to plastic slip. The loss of cohesion occurs mainly in the peak to residual stage of shale, but the weakening of internal friction angle is very small. (2) in the loading and unloading confining pressure test of residual stage, the influence of unloading confining pressure on the mechanical properties of residual stage is from multiple unload to multiple loading confining pressure. There are the same laws in the three test schemes of multiple unloading-one loading confining pressure and cyclic loading and unloading confining pressure, that is, when the axial stress is at the initial residual stage, the axial displacement is limited to be invariable, and when the confining pressure is unloaded at a uniform speed, After unloading the confining pressure to the set value, the axial stress remained basically stable after the axial displacement load was applied, and the axial stress-strain relationship showed the plastic deformation characteristic. (3) after loading the confining pressure, the axial stress remained basically stable after the axial displacement load was applied. (3) after loading the confining pressure, the axial stress-strain relationship showed plastic deformation characteristics. The axial stress-strain curve can be divided into three stages. The first is the axial stress recovery stage in which the axial stress increases with the increase of the confining pressure when confining pressure is loaded under the condition of limited axial displacement. The second is that the axial stress-strain has the same linear elastic deformation stage as before the peak when the axial displacement load is applied after stabilizing the confining pressure. The third is the elastic slip deformation stage when the axial stress reaches the residual stress. (4) the mechanical mechanism of the residual stage can be simplified as the friction slip deformation of the elastic rock block along the fracture surface. (5) based on the elastic slip mechanism of the residual stage of the rock, The elastic slip model of the single structure plane behind the peak of rock is proposed, and the friction slip between the fracture surfaces after the peak is simulated by the contact element of ANSYS, and the triaxial compression test process under different confining pressures is simulated. The results show that the model fits well with the actual test. (6) based on the post-peak elastic slip model, the deformation of tunnel surrounding rock simulated by ANSYS can well reflect the deformation characteristics of tunnel surrounding rock. The slip deformation along the weak plane behind the rock peak is the main reason of the tunnel surrounding rock deformation.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD315
【相似文獻】
相關(guān)期刊論文 前10條
1 郭臣業(yè);鮮學(xué)福;姜永東;王臣;;砂巖加載試驗峰后變形、破壞與應(yīng)變能特征[J];巖石力學(xué)與工程學(xué)報;2011年S2期
2 李小琴;李文平;李洪亮;孫如華;;砂巖峰后卸除圍壓過程的滲透性試驗研究[J];工程地質(zhì)學(xué)報;2005年04期
3 王東;王丁;韓小剛;周曉明;;側(cè)向變形控制下的灰?guī)r破壞規(guī)律及其峰后本構(gòu)關(guān)系[J];煤炭學(xué)報;2010年12期
4 王學(xué)濱;;基于梯度塑性理論的巖樣峰后變形特征研究[J];巖石力學(xué)與工程學(xué)報;2004年S1期
5 李文婷;李樹忱;馮現(xiàn)大;李術(shù)才;袁超;;基于莫爾 庫侖準(zhǔn)則的巖石峰后應(yīng)變軟化力學(xué)行為研究[J];巖石力學(xué)與工程學(xué)報;2011年07期
6 平洋;李樹忱;汪雷;;貫通節(jié)理砂巖峰后變形試驗研究及其在隧道支護中的應(yīng)用[J];煤炭學(xué)報;2014年04期
7 占小敏;;“峰后”在閩北地區(qū)的表現(xiàn)及優(yōu)質(zhì)豐產(chǎn)栽培技術(shù)[J];中外葡萄與葡萄酒;2006年06期
8 李樹忱;汪雷;李術(shù)才;韓建新;;不同傾角貫穿節(jié)理類巖石試件峰后變形破壞試驗研究[J];巖石力學(xué)與工程學(xué)報;2013年S2期
9 于永江;張春會;王來貴;;基于退化角的巖石峰后應(yīng)變軟化模型[J];煤炭學(xué)報;2012年03期
10 劉洋;劉長武;王東;葉定陽;周卓靈;;基于摩擦滑動的峰后斷續(xù)灰?guī)r力學(xué)特性的研究[J];煤炭學(xué)報;2014年02期
相關(guān)會議論文 前3條
1 王明洋;;分區(qū)破裂化是要研究峰后的曲線[A];新觀點新學(xué)說學(xué)術(shù)沙龍文集21:深部巖石工程圍巖分區(qū)破裂化效應(yīng)[C];2008年
2 張黎明;王在泉;宋全鋒;賀俊征;;粉砂巖卸荷破壞全過程的試驗研究[A];東北巖石力學(xué)與工程分會學(xué)術(shù)討論會論文集[C];2005年
3 徐松林;吳文;張華;吳玉山;;大理巖單軸壓縮峰前峰后循環(huán)特性[A];第五屆全國MTS材料試驗學(xué)術(shù)會議論文集[C];2001年
相關(guān)博士學(xué)位論文 前3條
1 平洋;峰后巖體宏細(xì)觀破裂過程數(shù)值模擬方法及應(yīng)用研究[D];山東大學(xué);2015年
2 黃耀光;深部破裂圍巖錨注漿液滲流擴散機理研究[D];中國礦業(yè)大學(xué);2015年
3 韓建新;基于應(yīng)變軟化模型的巖體峰后變形特性和隧洞結(jié)構(gòu)穩(wěn)定性研究[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 徐咸輝;峰后碎裂巖體破壞能量轉(zhuǎn)化與纖維噴射混凝土支護特性研究[D];山東大學(xué);2015年
2 吳文杰;巖石常規(guī)三軸峰后加卸載變形破壞聲發(fā)射規(guī)律研究[D];重慶大學(xué);2015年
3 李清淼;加卸載圍壓條件下巖石峰后力學(xué)特性試驗研究[D];重慶大學(xué);2015年
4 陳秉政;深部硬巖峰后力學(xué)參數(shù)演化規(guī)律研究[D];東北大學(xué);2013年
5 江益輝;沖擊荷載作用下巖石峰后損傷破壞特性研究[D];中南大學(xué);2014年
6 李文婷;巖石峰后應(yīng)變軟化本構(gòu)方程及數(shù)值模擬方法研究[D];山東大學(xué);2012年
7 朱雪松;巖石峰后應(yīng)變軟化特性及工程應(yīng)用[D];內(nèi)蒙古科技大學(xué);2015年
8 楊飛;基于CT圖像砂巖峰后損傷特征研究[D];內(nèi)蒙古科技大學(xué);2015年
9 劉青靈;考慮巖體峰后承載特性的進路回采力學(xué)規(guī)律研究[D];中南大學(xué);2013年
,本文編號:2176863
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2176863.html