大山選廠浮選回收率與磨礦產(chǎn)品粒度均勻性的多元線性回歸模型及應用研究
[Abstract]:In production, grinding fineness is always regarded as the main index of checking grinding, but the influence of grain size uniformity of grinding product on mineral dressing index is neglected. The particle size distribution of many grinding and classification products in many dressing plants has the phenomenon of "more two ends and less middle". The grain size inhomogeneity of grinding products has gradually become the bottleneck restricting the stability and promotion of ore dressing index in concentrator. How to effectively improve the particle size uniformity of grinding products has always been one of the main topics studied by concentrators. In recent years, a series of important achievements have been obtained, such as the selection of efficient grinding and classification equipment and the improvement of grinding and classifying process flow. Reasonable adjustment of grinding classification process parameters and other measures. According to the mechanical properties of ore in Dashan dressing Plant of Dexing Copper Mine and the particle size characteristics of mill feed, the grain size uniformity of grinding products is improved by reasonable adjustment of adding ball load. Based on a large number of flotation tests, a multivariate linear regression model between flotation recovery and particle size uniformity of grinding products was established by statistical regression analysis. The initial loading and adding ball load of 5.5 脳 8.5 m overflow ball mill were studied in laboratory. Based on the comprehensive analysis of the intermediate grade -0.2 0.01Omm yield, the mill utilization coefficient of -0.074 mm, and the grinding technical efficiency, etc. The best initial charge is 桅 70: 桅 60: 桅 40: 桅 30: 30: 20: 20: 20: 30, and on the basis of the best initial load, the best ball charge is 桅 70: 桅 60: 桅 4035: 35: 30. In view of the limitation of the production conditions and the actual conditions of the ball bunker in the separation plant, under the condition that 桅 80mm and 桅 50mm steel balls can only be added, it is determined by experiments that the proportion of 桅 50mm steel balls can be appropriately increased in production to achieve a more ideal grinding effect. On the basis of laboratory test, a 5.5 脳 8.5m overflow ball mill was selected to carry out the industrial test of adding ball load. The industrial test results show that the grinding index can be improved effectively by increasing the proportion of 桅 50mm small steel ball. The final addition charge is determined to be 桅 80: 桅 50: 55: 45. After reasonable adjustment of ball load, on the one hand, the particle size uniformity of grinding and classifying products is effectively improved, and after industrial test, In the overflow of hydrocyclone, the content of -0.2 0.038mmm optional grain-grade (-0.074mm) increased by 5.86% and 3.83%, and the content of too coarse grain of 0.2mm decreased by 3.75%. Second, the efficiency of mill and cyclone classification is improved effectively. The main results are as follows: in the stable period of industrial test, the processing capacity of the test mill is increased by 3.61t / h compared with that of the contrast mill, the utilization efficiency of the mill is increased by -0.074mm and the utilization efficiency of -0.2 0.038mm is increased by 7.007.56% and the classifying efficiency of the hydrocyclone is increased by 6.00% before and after the test. In addition, the mineral processing index of copper has been improved obviously. The yield and recovery rate of copper concentrate in the test mill have been increased by 0.51 and 1.24 percentage points, respectively, compared with the contrast mill, and the tailing grade has been reduced, and the loss of metal has been reduced. The aim of optimizing the homogeneity of grinding granularity and improving the flotation index of copper is achieved. The recovery rate of copper crude separation, the grade of raw ore, the quality of copper and the content of -0.2 0.038mm in grinding products were used as sample checking values for multivariate linear regression analysis. The model parameters were estimated by EViews software according to the least square method. After various tests, the multivariate linear regression model of copper recovery rate and grade of raw ore, fine copper position and -0.2 0.038mm easy to be grained grain content in grinding products is obtained. The regression model is 蔚 36.28871 33.22137 偽 -1.279861 尾 0.916851 緯. The actual meaning of the regression model is in agreement with the production situation of Dashan concentrator. It has certain guiding significance to the production management of the separation plant.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TD923
【相似文獻】
相關期刊論文 前10條
1 陳廣華;;磨礦工藝調試生產(chǎn)實踐[J];黃金;2007年09期
2 郭永杰;羅春梅;曾桂忠;段希祥;;非標準、高細度兩段磨礦的介質優(yōu)化試驗研究[J];礦產(chǎn)綜合利用;2008年06期
3 曾從江;金會心;李軼濤;;貴州織金新華磷礦磨礦細度的實驗研究[J];貴州化工;2010年02期
4 李明鑫;可變的磨礦流程——宿松磷礦的磨礦流程設計[J];化工礦山技術;1981年02期
5 朱秉生;;邦得功指數(shù)在磨礦中的應用[J];金屬礦山;1981年09期
6 嚴立德;兩種磨礦機計算方法的評述[J];有色金屬(選礦部分);1982年01期
7 張亨峰;;磨礦細度的快速檢查[J];有色礦山;1985年04期
8 段希祥;;磨礦機的耗能特性與節(jié)能途徑討論[J];昆明工學院學報;1986年01期
9 謝朝學;;不同磨礦介質磨礦效果的比較[J];江蘇冶金;1987年05期
10 盧蔭之;粗、細磨礦細度表示法[J];有色金屬(選礦部分);1988年01期
相關會議論文 前10條
1 肖慶飛;段希祥;;磨礦機械的性能分析及發(fā)展趨勢[A];2005年全國選礦高效節(jié)能技術及設備學術研討與成果推廣交流會論文集[C];2005年
2 曾雪平;;磨礦細度對樟東坑礦區(qū)九龍腦西部礦石回收率影響的生產(chǎn)實踐[A];復雜難處理礦石選礦技術——全國選礦學術會議論文集[C];2009年
3 李健;張偉;張曉煜;;提高選礦廠磨礦質量的探討[A];第十八屆川魯冀晉瓊粵遼七省礦業(yè)學術交流會論文集[C];2011年
4 張治元;王宇斌;孫盈;;微階段化磨礦工藝因素分析[A];第十屆全國粉體工程學術會暨相關設備、產(chǎn)品交流會論文專輯[C];2004年
5 肖慶飛;羅春梅;段希祥;王晶;;選擇性磨礦的進展及應用[A];2010'中國礦業(yè)科技大會論文集[C];2010年
6 王一達;;鈾礦水冶中磨礦設備應用及選型[A];全國鈾礦大基地建設學術研討會論文集(下)[C];2012年
7 何曉明;蘇興國;;齊大山選礦廠二次磨礦工藝優(yōu)化研究[A];魯冀晉瓊粵川遼七省金屬(冶金)學會第十九屆礦山學術交流會論文集(選礦技術卷)[C];2012年
8 張磊;李茂林;崔瑞;汪彬;朱曄;曾凡霞;;GN型高能磨機磨礦性能的試驗研究[A];2009中國選礦技術高峰論壇暨設備展示會論文[C];2009年
9 于濤;;一段閉路磨礦分級旋流器與分級機的工業(yè)實踐[A];第五屆全國礦山采選技術進展報告會論文集[C];2006年
10 崔瑞;李茂林;張磊;汪彬;朱曄;曾凡霞;;GN型高能磨機基本性能研究[A];2009中國選礦技術高峰論壇暨設備展示會論文[C];2009年
相關重要報紙文章 前4條
1 韓信合;青春在鎳都閃光[N];中國有色金屬報;2007年
2 馬秀勤 吳向東;多碎少磨助生產(chǎn)上臺階[N];中國黃金報;2010年
3 特約記者 海波 通訊員 紅玲;華隆選礦公司實現(xiàn)首季開門紅[N];中國礦業(yè)報;2007年
4 本報記者 劉紀生;如何有效降低礦業(yè)成本?[N];中國冶金報;2010年
相關博士學位論文 前10條
1 肖慶飛;兩段磨礦精確化裝補球方法的開發(fā)及應用研究[D];昆明理工大學;2008年
2 胡天喜;立式同軸離心磨機磨礦理論與試驗研究[D];昆明理工大學;2008年
3 葉賢東;超臨速磨礦理論研究[D];昆明理工大學;2002年
4 謝恒星;濕式磨礦中鋼球磨損機理與磨損規(guī)律數(shù)學模型的研究[D];中南大學;2002年
5 郭永杰;非標準兩段球磨磨礦流程實施精確化裝補球方法的應用研究[D];昆明理工大學;2009年
6 杜茂華;一段磨礦精確化裝補球方法開發(fā)及其破碎機理分析和應用效果研究[D];昆明理工大學;2007年
7 馬天雨;鋁土礦連續(xù)磨礦過程建模與優(yōu)化控制研究[D];中南大學;2012年
8 石貴明;降低鎳銅混合精礦氧化鎂含量的新工藝研究[D];昆明理工大學;2008年
9 盧毅屏;鋁土礦選擇性磨礦—聚團浮選脫硅研究[D];中南大學;2012年
10 吳彩斌;破碎統(tǒng)計力學原理及轉移概率在裝補球制度中的應用研究[D];昆明理工大學;2002年
相關碩士學位論文 前10條
1 劉瑜;柿竹園多金屬礦1500噸/日選礦廠磨礦過程優(yōu)化試驗研究[D];江西理工大學;2015年
2 王亞彬;提高太平掌銅礦磨礦細度研究[D];昆明理工大學;2012年
3 王宇斌;微階段化磨礦技術研究[D];西安建筑科技大學;2005年
4 劉杰;雙球體新型介質對車河選礦廠磨礦物料試驗研究[D];廣西大學;2013年
5 武俊杰;重慶彭水螢石礦的磨礦試驗研究[D];昆明理工大學;2010年
6 曾凡霞;超細磨礦分級工藝優(yōu)化對鋅浸出率的影響研究[D];武漢科技大學;2012年
7 王晶;粗磨機應用鑄鐵段作為粗磨介質的理論分析及實踐研究[D];昆明理工大學;2011年
8 潘新潮;精確化裝補球方法及應用研究[D];昆明理工大學;2003年
9 康懷斌;大山選廠浮選回收率與磨礦產(chǎn)品粒度均勻性的多元線性回歸模型及應用研究[D];昆明理工大學;2015年
10 張仁丙;提高氧壓酸浸閃鋅礦二段磨礦效率的研究[D];武漢科技大學;2014年
,本文編號:2168336
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2168336.html