采煤機(jī)傳動裝置檢測與故障診斷系統(tǒng)的研究
[Abstract]:Shearer is one of the important equipment of mechanization and modernization of coal mine production. It is a large complex system which integrates machinery, hydraulic pressure and electricity. Shearer drive is an important part of shearer, which is closely related to coal mining efficiency. Shearer transmission is the fault area of shearer, especially the gear and bearing of transmission device. The detection and fault diagnosis of shearer drive is of great significance to the safety of coal mine production. According to the Standard for Type Inspection of Drum Shearer, this paper summarizes and analyzes the test requirements of shearer transmission, and determines the vibration of gear and bearing in the cutting part, the oil temperature of the gear box in the cutting part, the vibration of the gear and bearing of the reducer in the traction part. The oil pool temperature, the voltage and current of cutting motor, the voltage and current of traction motor and the rotational speed of drum are the main detection parameters of gear transmission system. The detection method of each parameter and the installation position of sensor are studied and determined. In view of the gear and bearing faults of shearer drive, the improved BP neural network structure for fault diagnosis is determined, and the time domain and frequency domain characteristic parameters of neural network input are selected. The paper designs the system of detecting and fault diagnosis of shearer transmission device. The hardware of the system is mainly composed of sensor, conditioning circuit and data acquisition device. Based on the graphical programming language LabVIEW2011 and the improved BP neural network, the detection and diagnosis software is developed. The condition detection and fault diagnosis of the driving device of the cutting part and the traction part of the shearer are realized. The static characteristics of the system are analyzed through experiments. The results show that the static characteristics of each channel of the system are good and can meet the requirements of the shearer cutting part detection. The experimental results show that the testing module can realize the functions of data analysis, storage, display and so on. The fault diagnosis module can diagnose the gear and bearing of shearer.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD421.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉玲;張西;汪琳娜;;故障診斷技術(shù)的現(xiàn)狀與發(fā)展[J];電子測試;2016年Z1期
2 王仕軍;歐陽宇珉;鄧邦;;機(jī)械設(shè)備故障診斷技術(shù)及其發(fā)展趨勢[J];中國高新技術(shù)企業(yè);2015年29期
3 陳曉晶;;從魯爾集團(tuán)調(diào)研談對德國煤礦自動化的認(rèn)識[J];工礦自動化;2015年08期
4 郭衛(wèi);馮偉康;趙栓峰;;基于虛擬儀器的采煤機(jī)在線監(jiān)測與診斷系統(tǒng)研究[J];煤礦機(jī)械;2015年01期
5 王井坤;;采煤機(jī)搖臂軸承故障診斷技術(shù)[J];煤礦機(jī)電;2014年06期
6 方質(zhì)彬;潘宏俠;曲景陽;;基于嵌入式Linux的采煤機(jī)狀態(tài)監(jiān)測與故障診斷系統(tǒng)設(shè)計(jì)[J];煤礦機(jī)械;2013年11期
7 閆省偉;;采煤機(jī)故障診斷的研究[J];煤礦現(xiàn)代化;2012年05期
8 康淑云;;我國煤炭科技期刊現(xiàn)狀及其發(fā)展研究[J];中國科技期刊研究;2012年05期
9 賈俊明;;電牽引采煤機(jī)搖臂振動測試與故障分析[J];山西煤炭;2011年11期
10 許春雨;宋淵;宋建成;田慕琴;;基于單片機(jī)的采煤機(jī)紅外線位置檢測裝置開發(fā)[J];煤炭學(xué)報(bào);2011年S1期
相關(guān)碩士學(xué)位論文 前2條
1 楊鋒榮;采煤機(jī)性能自動檢測儀的研發(fā)[D];西安科技大學(xué);2015年
2 彭學(xué)前;采煤機(jī)故障診斷與故障預(yù)測研究[D];南京理工大學(xué);2013年
,本文編號:2163950
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2163950.html