黃土緩坡丘陵采煤塌陷預(yù)測(cè)中概率積分法適用性研究
[Abstract]:85% of China's coal resources come from well mining. Well mining will inevitably lead to surface subsidence and cracks, thus affecting mining production and people's lives. In addition, most of the coal mining areas in China are located in the ecologically fragile areas of Shanxi, Shaanxi and Mongolia. Especially on the basis of the study on the collapse morphological characteristics of the subsided land in the loess hilly area, the accurate prediction of the collapse degree of the subsided land can provide the basis for the prediction, treatment and restoration of the subsided land in the ecologically fragile coal mine area. At present, the probability integration method is widely used in the prediction of collapse, which is more suitable in the plain area, and the applicability of the method in the loess gentle slope hilly area needs to be studied. Therefore, this paper takes 903 face of Pingshuo coal mine as the research object, uses probability integration method as the method to predict the collapse of 903 face in Pingshuo coal mine, and makes a field investigation on the sample land of 100 脳 100m collapse area on the face. Based on the statistical analysis and spatial autocorrelation analysis of the collapsing land values (subsidence area, collapse depth, crack number, etc.), the morphological characteristics of subsidence land in Pingshuo mining area are studied. Finally, the prediction results of the probabilistic integration method are compared with the measured results, and the applicability of the method to the prediction of collapse in the loess hilly region is discussed. The main conclusions of this paper are as follows: (1) the collapse prediction of 903 face in Jinggong No.3 Mine is carried out by using probabilistic integration method and with the help of mining subsidence software (MSAS), developed by China University of Mining and Technology. The maximum subsidence area is located at the center of 903 face, which is 9269mm. The prediction results of subsidence in the sample plots show that the subsidence range is 1-9 m, and the DEM analysis results show that the subsidence degree of the sample plots is gradually increasing within 100m from east to west. The subsidence range is from 1 to 3.5 m. (2) the surface damage caused by mining in Pingshuo mining area is mainly manifested by surface subsidence and fracture. Through prediction calculation and remote sensing interpretation, the subsidence area of 903 face in Jinggong No. 3 Coal Mine is 220.02 mm ~ 2, of which the cultivated land is 200.18hm2and the woodland is 19.82hm2. The field survey results of the sample land (100 脳 100m) in the subsidence area show that the collapse area and the number of cracks are uniformly distributed in the sample area, but the spatial distribution of the collapse depth is not consistent. The research on the collapsing site space shows that the collapse in the central and southern part of the sample plot is more serious. However, the northwestern collapse is not serious, which may be related to the difference of mining technology and geological conditions. (3) by comparing the predicted subsidence value with the measured value, the root mean square error of the actual value calculated is 2.18 times of the standard deviation. According to the standard definition of root mean square error, the error between the predicted subsidence value and the measured subsidence value is large, which may be related to the geological characteristics of the hilly area and the range of sample plots.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD327
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳侃,靳建明,戴仔強(qiáng);概率積分法預(yù)計(jì)下沉量的改進(jìn)[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào);2003年01期
2 郭文兵,鄧喀中,鄒友峰;概率積分法預(yù)計(jì)參數(shù)選取的神經(jīng)網(wǎng)絡(luò)模型[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2004年03期
3 查劍鋒;郭廣禮;趙海濤;賈新果;;概率積分法修正體系現(xiàn)狀及發(fā)展展望[J];金屬礦山;2008年01期
4 馬洪浩;郭廣禮;王磊;高盼;俞紅;;測(cè)量誤差對(duì)概率積分法求參精度的影響分析[J];現(xiàn)代礦業(yè);2011年06期
5 王正帥;鄧喀中;;概率積分法沉陷預(yù)計(jì)的邊緣修正模型[J];西安科技大學(xué)學(xué)報(bào);2012年04期
6 張正興;趙愛(ài)軍;李威;李小林;孫瑩;彭亮;;基于空間分析的概率積分法在預(yù)測(cè)多煤層采空區(qū)塌陷中的應(yīng)用——以青海塔妥煤礦為例[J];中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào);2012年04期
7 陳俊杰;郭延濤;;基于灰色系統(tǒng)理論的概率積分法參數(shù)確定研究[J];測(cè)繪通報(bào);2012年S1期
8 陳俊杰;陶宛東;郭延濤;;基于灰色預(yù)測(cè)模型的概率積分法參數(shù)確定研究[J];河南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
9 卞和方;楊化超;張書畢;;概率積分法預(yù)計(jì)參數(shù)的智能優(yōu)化選擇方法研究[J];采礦與安全工程學(xué)報(bào);2013年03期
10 王世道;林福欽;;對(duì)概率積分法的一些看法[J];礦山測(cè)量;1984年02期
相關(guān)會(huì)議論文 前2條
1 孫鳳余;鄭偉;郭新華;;概率積分法在礦山環(huán)境地表移動(dòng)預(yù)測(cè)評(píng)估中的應(yīng)用[A];河南地球科學(xué)通報(bào)2008年卷(下冊(cè))[C];2008年
2 陳俊杰;郭延濤;;基于灰色系統(tǒng)理論的概率積分法參數(shù)確定研究[A];第四屆“測(cè)繪科學(xué)前沿技術(shù)論壇”論文精選[C];2012年
相關(guān)碩士學(xué)位論文 前10條
1 王拂曉;堤壩下采煤沉陷規(guī)律及治理技術(shù)研究[D];中國(guó)礦業(yè)大學(xué);2015年
2 趙旺;煤礦采空區(qū)塌陷影響范圍研究[D];南華大學(xué);2015年
3 石磊;厚松散層條件下概率積分法求參方法研究[D];安徽理工大學(xué);2016年
4 李廣賽;地表動(dòng)態(tài)移動(dòng)與變形規(guī)律研究[D];安徽理工大學(xué);2016年
5 劉煒;舒蘭市東富村采空區(qū)地表沉降變形研究[D];吉林大學(xué);2017年
6 孫冉;概率積分法參數(shù)求取和模型修正方法研究及程序?qū)崿F(xiàn)[D];安徽理工大學(xué);2017年
7 張諸林;兩層采煤地面變形模擬研究[D];吉林大學(xué);2012年
8 楊光銳;基于GIS與概率積分法的礦山開(kāi)采沉陷預(yù)測(cè)研究[D];湖南科技大學(xué);2014年
9 朱錕;基于概率積分法與VB語(yǔ)言的采空區(qū)地表移動(dòng)變形預(yù)測(cè)系統(tǒng)研究[D];長(zhǎng)安大學(xué);2013年
10 呂惠農(nóng);地下采動(dòng)影響下水工建筑物的危害預(yù)測(cè)分析[D];河海大學(xué);2006年
,本文編號(hào):2158297
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2158297.html