采空區(qū)及煤柱下不同位置巷道穩(wěn)定性控制研究
[Abstract]:In the process of close distance coal seam mining, when the upper coal mining is finished and the roof collapses behind, the coal pillars left in the upper coal mining process will produce stress concentration in the coal seam floor, and the stress distribution law of the floor will change. It directly affects the integrity of the lower coal seam roof. In the mining process of the lower coal, the surrounding rock pressure of the mining roadway is high and the roof stability is poor, which leads to the serious deformation and destruction of the roadway and the difficulty of supporting. Therefore, it is of theoretical and practical significance to study the stress distribution law of the coal in the middle and lower coal layers, the surrounding rock pressure, failure characteristics and stability control of the roadway in different positions of the lower coal seam. In this paper, based on the research background of Jialequan Coal Mine No. 8 #yun9# coal seam mining, combined with theoretical analysis, numerical simulation and engineering application, the distribution law of coal pressure in the near distance coal seam is studied. The deformation and failure characteristics of roadway in different positions of lower coal and the stability control of roadway surrounding rock are studied. The main conclusions are as follows: (1) the influence law of disturbance caused by mining of upper coal seam on rock layer under coal seam is analyzed by using slip line field theory. The method of calculating the maximum damage depth of upper coal mining to the lower strata is obtained. Combined with the actual geological conditions of Jialequan Coal Mine, the stress distribution law of different depths in the goaf is obtained by calculation. The results show that the vertical stress of the lower coal is the most affected by the mining disturbance of the overlying coal seam, the vertical stress of the lower strata within 5 m of the pillar and its two sides is greater than that of the original rock, and the maximum value is at the center of the coal pillar. The vertical stress of the lower strata beyond 5m on both sides of the coal pillar is smaller than that of the original rock. (2) with the reduction of the distance between the strata under the pillar and the upper coal pillar, the vertical stress of the strata increases obviously, reaching the maximum of 16 MPA, which is 2.56 times of the original rock stress. After excavation, the horizontal stress and shear stress of the surrounding rock change little, but the vertical stress increases obviously, and increases by 1.4 to 1.7 times, and the stress concentration in the surrounding rock of the roadway is obvious. The maximum vertical stress of roadway surrounding rock under goaf is 9 MPA, and the maximum vertical stress of surrounding rock under coal pillar is up to 25 MPA. (3) the roadway below the goaf in the lower coal is affected by the pressure relief of overlying goaf, and the pressure of surrounding rock at two sides and two shoulders of roadway is reduced. The shear failure range of surrounding rock is small and the overall stability of roadway is better. However, after the lower coal roadway is excavated under the coal pillar, the shear failure range of the surrounding rock of the roadway increases obviously, especially the shear fracture of the surrounding rock on the two shoulders of the roadway is developed, especially the shear fracture of the surrounding rock on the two shoulders of the roadway. (4) based on the analysis of the distribution of surrounding rock and the stability of roadway, the parameters of roadway support under coal pillar in Jialequan coal mine are optimized. The engineering application and monitoring results show that the deformation of the roof and floor and the two sides of the roadway are obviously reduced, the stress range of anchor cable is reasonable, and the shear failure area of roadway is reduced, which indicates that the optimized roadway scheme has achieved good support effect. It ensures the safety and stability of roadway during use.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD322.4;TD353
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張嘉勇;郭立穩(wěn);邱利;王福生;;模糊數(shù)學(xué)理論在煤礦巷道穩(wěn)定性評價(jià)中的應(yīng)用[J];礦業(yè)安全與環(huán)保;2007年04期
2 邱利;張嘉勇;;煤礦巷道穩(wěn)定性評價(jià)[J];河北理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年03期
3 周正濂;三也;;卸載要素類別對巷道穩(wěn)定性的影響[J];世界采礦快報(bào);1992年27期
4 付躍升,楊萬斌;萬年礦巷道穩(wěn)定性調(diào)查與分析[J];東北煤炭技術(shù);1999年01期
5 賀峰;;煤礦巷道穩(wěn)定性評價(jià)指標(biāo)體系設(shè)計(jì)研究[J];中小企業(yè)管理與科技(上旬刊);2010年04期
6 王同旭;軟弱直接頂厚度對巷道穩(wěn)定性影響[J];礦山壓力與頂板管理;1997年Z1期
7 宋選民,柳崇偉;構(gòu)造裂隙分布與巷道穩(wěn)定性相關(guān)規(guī)律[J];礦山壓力與頂板管理;2000年04期
8 宋選民,顧鐵鳳;構(gòu)造裂隙對巷道穩(wěn)定性影響的評價(jià)方法[J];太原理工大學(xué)學(xué)報(bào);2001年06期
9 翟路鎖;裂隙巖體巷道穩(wěn)定性模擬研究試驗(yàn)[J];煤礦開采;2003年02期
10 李勉,王維德;斷層影響帶內(nèi)巷道穩(wěn)定性的改善[J];世界采礦快報(bào);1994年07期
相關(guān)會議論文 前6條
1 吳興春;王思敬;;巷道穩(wěn)定性評價(jià)的集成計(jì)算機(jī)信息系統(tǒng)[A];面向21世紀(jì)的巖石力學(xué)與工程:中國巖石力學(xué)與工程學(xué)會第四次學(xué)術(shù)大會論文集[C];1996年
2 朱之杰;田永綏;張汝源;彭光忠;;對于巷道穩(wěn)定性研究工作中地質(zhì)工作的建議[A];地下工程經(jīng)驗(yàn)交流會論文選集[C];1982年
3 宋曉天;王永光;;邊界元法在礦山采場、巷道穩(wěn)定性分析方面的應(yīng)用[A];邊界元法在巖石力學(xué)和工程中應(yīng)用會議文集[C];1987年
4 朱珍德;王玉樹;;巷道圍巖流變對巷道穩(wěn)定性的影響[A];巖土力學(xué)的理論與實(shí)踐——第三屆全國青年巖土力學(xué)與工程會議論文集[C];1998年
5 陳新明;盛天寶;;趙固二礦高水壓裂隙巖體巷道穩(wěn)定性研究[A];中國煤炭學(xué)會成立五十周年系列文集2012年全國礦山建設(shè)學(xué)術(shù)會議?ㄉ希C];2012年
6 劉剛;宋宏偉;;巷道穩(wěn)定性影響因素分析[A];礦山建設(shè)工程新進(jìn)展——2006全國礦山建設(shè)學(xué)術(shù)會議文集(上冊)[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 張春陽;鋁土礦圍巖性質(zhì)時(shí)空效應(yīng)與巷道穩(wěn)定性研究[D];中南大學(xué);2013年
2 葛勇;露井聯(lián)采臺階爆破對地下巷道穩(wěn)定性影響研究[D];北京科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 張穎;深部斷續(xù)節(jié)理巖體中滲流對巷道穩(wěn)定性影響的研究[D];貴州大學(xué);2015年
2 張兵;深井近距離煤層群開采對下伏巷道穩(wěn)定性影響研究[D];安徽理工大學(xué);2016年
3 李林博;基于巷道穩(wěn)定性和防突效果的底抽巷位置優(yōu)化研究[D];河南理工大學(xué);2014年
4 艾成才;基于加卸載響應(yīng)比的單洞及小間距雙洞巷道穩(wěn)定性研究[D];湖南工業(yè)大學(xué);2016年
5 邱利;煤礦巷道穩(wěn)定性評價(jià)與安全評價(jià)軟件開發(fā)[D];河北理工大學(xué);2005年
6 胡龍飛;爆破震動對巷道穩(wěn)定性影響研究[D];江西理工大學(xué);2014年
7 張華磊;下保護(hù)層開采對上覆巷道穩(wěn)定性的影響[D];安徽理工大學(xué);2008年
8 甘仕偉;復(fù)雜地質(zhì)條件下巷道穩(wěn)定性分析與地壓控制研究[D];武漢科技大學(xué);2014年
9 原鴻鵠;采空區(qū)煤壁下礦壓分布規(guī)律及巷道穩(wěn)定性控制研究[D];太原理工大學(xué);2015年
10 劉美平;斷層附近地應(yīng)力分布規(guī)律及巷道穩(wěn)定性分析[D];山東科技大學(xué);2009年
,本文編號:2149266
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2149266.html