深埋脆性巖石的本構(gòu)模型及開挖破壞區(qū)深度預(yù)測
[Abstract]:With the construction of basic engineering, the gradual deepening of resource development and the urgency of nuclear waste disposal, the excavation and destruction area of deep buried underground cavern has become a hot issue that scholars at home and abroad pay attention to. In this paper, the method of theoretical analysis, numerical simulation and field monitoring is used to verify the failure characteristics of the rock and the formation mechanism of the damage zone during the excavation of the hard-brittle rock tunnel. A series of problems such as numerical simulation and depth prediction of excavation failure zone are studied. In this paper, the evolution law of mechanical properties of brittle rock in the process of failure is summarized, and then the constitutive model which is suitable for describing the mechanical behavior of brittle rock mass is analyzed on the basis of theory and existing research results, that is, the elastic-brittle plastic (EBP) model. The cohesion brittleness friction strength (CBF) model and the fracture initial-splitting limit (DISL) model provide a model for numerical simulation. The excavation of Mine-by tunnel in Canadian underground laboratory was simulated by the finite element software Phase2. The most effective brittle model is selected by comparing with the monitoring data of the excavation failure zone of the Mine-by test tunnel. It is found that the range angle of damage zone obtained by using EBP model is larger than the observed value, the depth and range angle of damage zone calculated by CBF model is smaller than that of monitoring data, and the depth and range angle calculated by DISL model are equal to the observed values. The results preliminarily verify the superiority of the DISL model. On this basis, considering the highly irregular profile of the actual excavated surface, the smooth circular and continuous small semicircle are used to simulate the design and actual excavated surface contour, respectively, and to obtain different excavation failure areas and stress states. It can be seen that the simplified geometric shape of the excavated surface is unreasonable. The excavation process of the tunnel is simulated by the progressive excavation method, and the influence of the excavation simulation method on the shape of the damage zone is analyzed comparatively because the damage zone is also caused by the left and right side walls of the tunnel. The results show that the geometric shape and range of the excavation failure zone can be captured well by using the DISL model and the progressive excavation method taking the actual section profile as the excavation boundary. The numerical simulation method verified above is used to simulate and calculate the smooth circular tunnel, and the mechanical response of surrounding rock near the excavating surface is analyzed. It is found that the sign of rock entering the failure zone from high failure zone is that the minimum principal stress value begins to increase, the tensile strain value reaches the maximum, and the shear strain value decreases sharply, and the zoning index of the outer boundary is the inversion of the volume strain curve in the failure zone. The generation of yield element indicates that the DISL model can well describe the stress path of surrounding rock and accurately describe the mechanical behavior of brittle rock mass. For a given project, the above zoning method provides a new idea for the accurate determination of the size of the damage zone. If this achievement is further developed and applied to engineering practice, it will be of great significance to predict the long-term stability of engineering.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD315
【相似文獻】
相關(guān)期刊論文 前10條
1 高文學,劉運通,楊軍;脆性巖石沖擊損傷模型研究[J];巖石力學與工程學報;2000年02期
2 肖洪天,周維垣;脆性巖石變形與破壞的細觀力學模型研究[J];巖石力學與工程學報;2001年02期
3 呂力行;壓頭靜侵入脆性巖石引起等效壓桿失穩(wěn)侵入機理[J];湘潭礦業(yè)學院學報;2003年01期
4 謝海峰;饒秋華;謝強;黎縱宇;王志;;脆性巖石高溫剪切(Ⅱ型)斷裂的微觀機理[J];中國有色金屬學報;2008年08期
5 姚贊勛;張漢興;;脆性巖石在單向壓應(yīng)力作用下的破環(huán)機理[J];武漢鋼鐵學院學報;1982年01期
6 李鵬;饒秋華;李卓;敬靜;;脆性巖石熱-水-力耦合應(yīng)力強度因子計算(英文)[J];Transactions of Nonferrous Metals Society of China;2014年02期
7 朱珍德,徐衛(wèi)亞,張愛軍;脆性巖石損傷斷裂機理分析與試驗研究[J];巖石力學與工程學報;2003年09期
8 陳益峰;李典慶;榮冠;姜清輝;周創(chuàng)兵;;脆性巖石損傷與熱傳導特性的細觀力學模型[J];巖石力學與工程學報;2011年10期
9 史維祥,金國棟;刀具作用下脆性巖石破碎的實驗研究[J];有色金屬;1986年01期
10 張東風;陳星明;肖正學;;脆性巖石中爆炸擴腔作用的數(shù)值模擬及分析[J];爆破;2014年01期
相關(guān)會議論文 前6條
1 黃書嶺;丁秀麗;張傳慶;;深部脆性巖石的力學行為與本構(gòu)模型研究[A];中國軟巖工程與深部災(zāi)害控制研究進展——第四屆深部巖體力學與工程災(zāi)害控制學術(shù)研討會暨中國礦業(yè)大學(北京)百年校慶學術(shù)會議論文集[C];2009年
2 魯曉兵;矯賓田;王淑云;;飽和脆性巖石在反平面剪切條件下的應(yīng)變局部化分析[A];第九屆全國巖石動力學學術(shù)會議論文集[C];2005年
3 王士民;朱合華;馮夏庭;;脆性巖石破壞數(shù)值模擬研究的兩個問題[A];第一屆中國水利水電巖土力學與工程學術(shù)討論會論文集(上冊)[C];2006年
4 ;用800kN多功能三軸儀測量脆性巖石的擴容,蠕變及松弛(英文)[A];陳宗基論文選[C];1994年
5 許錫昌;劉泉聲;;溫度作用下脆性巖石的破壞類型及強度準則[A];新世紀巖石力學與工程的開拓和發(fā)展——中國巖石力學與工程學會第六次學術(shù)大會論文集[C];2000年
6 石澤全;于智海;伍向陽;金濟山;;用8000KN多功能三軸儀測量脆性巖石的擴容、蠕變及松弛[A];陳宗基論文選[C];1994年
相關(guān)博士學位論文 前10條
1 李曉照;基于細觀力學的脆性巖石漸進及蠕變失效特性研究[D];西安建筑科技大學;2016年
2 張利潔;高應(yīng)力脆性巖石時滯性破壞特性研究[D];中國地質(zhì)大學;2016年
3 許學良;脆性巖石抗拉特性及其破裂機制的試驗與細觀模擬研究[D];北京科技大學;2017年
4 柴金飛;基于矩張量理論的脆性巖石破裂機理研究[D];北京科技大學;2017年
5 黃書嶺;高應(yīng)力下脆性巖石的力學模型與工程應(yīng)用研究[D];中國科學院研究生院(武漢巖土力學研究所);2008年
6 張勤;脆性巖石熱—力—損傷耦合機理及數(shù)值模擬研究[D];武漢大學;2013年
7 江濤;基于細觀力學的脆性巖石損傷—滲流耦合本構(gòu)模型研究[D];河海大學;2006年
8 張凱;脆性巖石力學模型與流固耦合機理研究[D];中國科學院研究生院(武漢巖土力學研究所);2010年
9 彭俊;脆性巖石強度與變形特性研究[D];武漢大學;2015年
10 王小瓊;脆性巖石損傷及物理性質(zhì)演化的實驗研究[D];中國地震局地球物理研究所;2012年
相關(guān)碩士學位論文 前4條
1 袁圣渤;硬脆性巖石直接拉伸力學試驗與計算分析研究[D];山東大學;2016年
2 吳子科;脆性巖石裂紋尖端擴展狀態(tài)的混沌動力學分析[D];山東科技大學;2007年
3 段海波;高應(yīng)力下脆性巖石力學特性及細觀演化機制研究[D];長江科學院;2013年
4 于瑩;脆性巖石擠壓斷裂過程應(yīng)力磁感強度實驗研究[D];東北大學;2011年
,本文編號:2131875
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2131875.html