大型順層邊坡穩(wěn)定性分析方法及處治技術(shù)優(yōu)化研究
本文選題:自定義本構(gòu) + 強(qiáng)度折減法。 參考:《北京科技大學(xué)》2015年博士論文
【摘要】:白云鄂博東礦是包鋼乃至全國(guó)的主力稀土礦,隨著開采高度的不斷增加,滑塌事故屢屢發(fā)生,其中尤以B區(qū)滑體規(guī)模最大,且變形最為活躍。從已出露的邊坡狀態(tài)看,該區(qū)域邊坡將長(zhǎng)期處于多斷層交叉影響帶中,巖體極為破碎。而該區(qū)段恰恰是礦山開采和運(yùn)輸?shù)难屎硗ǖ?近年來(lái)已采取了一系列處治措施,各類加固工程受內(nèi)部巖層錯(cuò)動(dòng)影響已出現(xiàn)不同程度的變形。且隨著深部邊坡的開挖和各斷層的交匯,該區(qū)域邊坡會(huì)形成一個(gè)巨型潛在滑體,既有的處治方案能否保障深部邊坡的安全,成為礦山亟待解決的重大技術(shù)難題。 本研究以“白云鄂博鐵礦邊坡穩(wěn)定性實(shí)時(shí)動(dòng)態(tài)綜合監(jiān)測(cè)預(yù)警系統(tǒng)”項(xiàng)目為依托,以東礦邊坡B區(qū)大型順層邊坡的典型剖面B-B’邊坡為研究對(duì)象,針對(duì)現(xiàn)有巖質(zhì)邊坡穩(wěn)定性分析及處治技術(shù)存在的問(wèn)題,通過(guò)監(jiān)測(cè)點(diǎn)的實(shí)測(cè)位移反演出適合B區(qū)工況的自定義本構(gòu)模型,并基于此本構(gòu)模型開展強(qiáng)度折減改進(jìn)研究,獲取更為可靠的邊坡安全系數(shù),最后針對(duì)性地提出邊坡優(yōu)化處治方案,主要包括以下研究工作: (1)基于廣義非線性統(tǒng)一強(qiáng)度準(zhǔn)則,以Visual C++編寫廣義非線性統(tǒng)一強(qiáng)度準(zhǔn)則程序代碼,通過(guò)調(diào)整中間應(yīng)力參數(shù)b,生成不同的動(dòng)態(tài)鏈接庫(kù)文件并結(jié)合Flac3D的UDM(User Defined Model,自定義本構(gòu)模型)功能,實(shí)現(xiàn)對(duì)不同非線性強(qiáng)度準(zhǔn)則的數(shù)值模擬。 (2)基于BP神經(jīng)網(wǎng)絡(luò)反演技術(shù),以監(jiān)測(cè)點(diǎn)位移為輸入向量,以各邊坡巖體物理力學(xué)參數(shù)及中間應(yīng)力參數(shù)b為輸出向量,以多工況數(shù)值模擬樣本構(gòu)建BP神經(jīng)網(wǎng)絡(luò)系統(tǒng)。將現(xiàn)場(chǎng)實(shí)測(cè)位移代入該系統(tǒng),反演得到適應(yīng)本工況的巖體物理力學(xué)參數(shù)及中間應(yīng)力參數(shù)b,完成基于廣義非線性統(tǒng)一強(qiáng)度理論的自定義本構(gòu)模型構(gòu)建,經(jīng)驗(yàn)證相比其他本構(gòu)模型更符合本剖面邊坡實(shí)際工況。 (3)從邊坡極限狀態(tài)下各巖體參數(shù)變化的差異性出發(fā),合理設(shè)定不同參數(shù)的折減上下限,實(shí)現(xiàn)基于廣義非線性統(tǒng)一強(qiáng)度準(zhǔn)則的改進(jìn)強(qiáng)度折減。并基于此改進(jìn)折減方案,對(duì)邊坡巖體進(jìn)行穩(wěn)定性評(píng)價(jià)研究,確定邊坡巖體穩(wěn)定性敏感度排序及關(guān)鍵巖體。 (4)基于本研究確定的自定義本構(gòu)模型,對(duì)深部邊坡按照既有處治措施進(jìn)行開挖模擬,發(fā)現(xiàn)如深部邊坡平臺(tái)仍采取既有處治措施,極有可能發(fā)生大規(guī);率鹿,必須采取進(jìn)一步的處治措施。 (5)結(jié)合本研究得到的邊坡巖體穩(wěn)定性敏感度排序,確定了“錨固洞塞+注漿+預(yù)應(yīng)力錨索+肋柱(錨墩)砼墻”的初步處治方案。經(jīng)計(jì)算驗(yàn)證,采取初步處治方案后,可避免發(fā)生前文所述的大規(guī)模滑坡,但個(gè)別時(shí)期的邊坡安全系數(shù)仍低于本研究剖面邊坡的安全限值。為此,分別從“減少錨固洞塞爆破作業(yè)工作量”和“盡早提升斷層破碎帶巖體強(qiáng)度”兩個(gè)角度,分析了對(duì)初步處治方案的優(yōu)化機(jī)理,并針對(duì)性地提出了“錨固洞塞+系統(tǒng)布置型預(yù)應(yīng)力錨索”和“超前注漿、整體錨固”的組合優(yōu)化方案,經(jīng)計(jì)算驗(yàn)證,優(yōu)化后的方案取得了更好的加固效果,邊坡處于更為穩(wěn)定的狀態(tài)。
[Abstract]:Baiyunebo east mine is the main Rare-earth Mine in Baotou Steel and even the whole country. With the continuous increase of the mining height, the collapse accidents occur repeatedly, especially the largest size of the slide body in the B area and the most active deformation. From the state of the exposed slope, the slope will be in the multi fault cross influence zone for a long time, and the rock mass is very broken. It is just the throat channel of mining and transportation. In recent years, a series of treatment measures have been taken. All kinds of reinforcement projects have been deformed in varying degrees under the influence of the internal rock strata, and with the excavation of the deep slope and the intersection of the faults, the slope of the region will form a giant potential slide, and the existing treatment scheme can guarantee the depth. The safety of the side slope has become a major technical problem to be solved in the mine.
Based on the project of "Baiyunebo iron mine slope stability real-time dynamic comprehensive monitoring and warning system", this study is based on the typical section B-B 'slope of the large bedding slope in the B area of the east mine slope as the research object. In view of the existing problems of the existing rock slope stability analysis and treatment technology, the measured displacement of the monitoring point is suitable for B. Based on this constitutive model, the strength reduction and improvement research is carried out to obtain a more reliable slope safety factor. Finally, the slope optimization treatment scheme is proposed, which mainly includes the following research work:
(1) based on the generalized nonlinear unified strength criterion, the program code of generalized nonlinear unified strength criterion is written in Visual C++. By adjusting the intermediate stress parameter B, different dynamic link library files are generated and the functions of Flac3D UDM (User Defined Model, custom constitutive model) are combined to realize the numerical simulation of different nonlinear strength criteria.
(2) based on the BP neural network inversion technique, the monitoring point displacement is the input vector, and the physical and mechanical parameters of the rock mass and the intermediate stress parameter B are the output vectors, and the BP neural network system is constructed by the numerical simulation samples of the multiple conditions. The field measured displacement is replaced by the system, and the physical and mechanical parameters of rock mass adapted to the working conditions and the middle part of the system are obtained. The stress parameter B is constructed by the custom constitutive model based on the generalized nonlinear unified strength theory. Compared with the other constitutive models, it is more consistent with the actual working conditions of the slope.
(3) starting from the difference of the variation of rock mass parameters under the limit state of the slope, the upper and lower limits of different parameters are set reasonably, and the improved strength reduction based on the generalized nonlinear unified strength criterion is realized. Based on this improved reduction scheme, the stability evaluation of slope rock mass is studied and the stability sensitivity of slope rock mass is sorted and closed. Bonded rock mass.
(4) based on the custom constitutive model determined by this study, the excavation simulation of the deep slope is carried out according to the existing treatment measures. It is found that the deep slope platform still takes the treatment measures, and it is extremely likely to take a large scale landslide accident, and further treatment measures must be taken.
(5) the preliminary treatment scheme of "anchorage plug + grouting + prestressed anchorage column (anchor pier) concrete wall" is determined according to the order of stability sensitivity of slope rock mass obtained in this study. After calculation and verification, a preliminary treatment scheme can be taken to avoid the large-scale landslides described in the previous article, but the safety factor of slope in some period is still lower than that of the research. This paper analyzes the optimization mechanism of the preliminary treatment scheme from two angles of "reducing the work load of anchorage plug blasting operation" and "improving the strength of rock mass as early as possible", and puts forward the "anchorage plug + system prestressed anchor cable" and "advance grouting". The combined optimization scheme of anchorage is verified by calculation. The optimized scheme has achieved better reinforcement effect and the slope is in a more stable state.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TD854.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 唐芬;鄭穎人;;邊坡漸進(jìn)破壞雙折減系數(shù)法的機(jī)理分析[J];地下空間與工程學(xué)報(bào);2008年03期
2 李健;吳順川;高永濤;周喻;鄧增兵;;基于Kriging與Closest Point融合算法的邊坡巖土層界面擬合[J];北京科技大學(xué)學(xué)報(bào);2012年05期
3 周火明,徐平,盛謙,喻勇;巖體力學(xué)試驗(yàn)新技術(shù)在三峽工程中的應(yīng)用[J];長(zhǎng)江科學(xué)院院報(bào);2001年05期
4 許東俊,耿乃光;中等主應(yīng)力變化引起的巖石破壞與地震[J];地震學(xué)報(bào);1984年02期
5 欒茂田,武亞軍,年廷凱;強(qiáng)度折減有限元法中邊坡失穩(wěn)的塑性區(qū)判據(jù)及其應(yīng)用[J];防災(zāi)減災(zāi)工程學(xué)報(bào);2003年03期
6 李紅;宮必寧;陳琰;;有限元強(qiáng)度折減法邊坡失穩(wěn)判據(jù)[J];水利與建筑工程學(xué)報(bào);2007年01期
7 張常亮;李同錄;李萍;趙成;;邊坡三維極限平衡法的通用形式[J];工程地質(zhì)學(xué)報(bào);2008年01期
8 鄭穎人,趙尚毅,張魯渝;用有限元強(qiáng)度折減法進(jìn)行邊坡穩(wěn)定分析[J];中國(guó)工程科學(xué);2002年10期
9 鄭穎人,趙尚毅,宋雅坤;有限元強(qiáng)度折減法研究進(jìn)展[J];后勤工程學(xué)院學(xué)報(bào);2005年03期
10 王啟明;;我國(guó)非煤露天礦山大中型邊坡安全現(xiàn)狀及對(duì)策[J];金屬礦山;2007年10期
,本文編號(hào):2095981
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2095981.html