大采高液壓支架快速移架與姿態(tài)控制研究
本文選題:液壓支架 + 移架速度; 參考:《太原科技大學》2017年碩士論文
【摘要】:我國是一個多煤少油的國家,已探明的煤炭儲量占世界煤炭儲量的33.8%,可采量位居第二。煤炭在我國的一次性能源結(jié)構(gòu)中處于重要位置。為提高煤炭企業(yè)的生產(chǎn)效率,液壓支架作為井下機械化綜采工作面的重要支護設(shè)備,其運行性能及支護性能的提升(即液壓支架的液壓控制系統(tǒng)的性能及姿態(tài)控制精度)至關(guān)重要。本文以平陽重工大采高電液控制強力液壓支架為研究對象具體研究工作主要為以下幾個方面:1、首先介紹我國液壓支架的發(fā)展概況,分析國內(nèi)外液壓支架的研究現(xiàn)狀,對目前液壓支架仍存在的問題進行總結(jié)。2、針對現(xiàn)階段國內(nèi)綜采工作面液壓支架的移架速度普遍低于采煤機的運行速度,影響綜采工作效率的問題,本文利用功率鍵合圖的方法推導(dǎo)系統(tǒng)的數(shù)學模型。在此基礎(chǔ)上,完成液壓控制系統(tǒng)AMESim仿真模型搭建,研究液壓支架移架過程的動態(tài)特性。通過對泵站流量、伸縮缸的升降位移、伸縮缸與管路連接處的過流面積、液控單向閥的通流面積、供液管徑等液壓支架工作參數(shù)進行優(yōu)化匹配,最終使液壓支架升降柱速度分別達到0.57m/s、0.56 m/s,較原始參數(shù)分別提高了17%、16%。參數(shù)優(yōu)化大大提升了液壓支架的移架速度。3、對液壓支架的運動狀態(tài)進行理論分析,建立液壓支架的運動學模型,并在此基礎(chǔ)上推導(dǎo)液壓支架結(jié)構(gòu)件的數(shù)學模型,利用數(shù)學函數(shù)表示相關(guān)鉸接點位置坐標及立柱傾角、千斤頂傾角、后搖桿傾角、掩護梁傾角、千斤頂行程等重要參數(shù)的數(shù)學表達式。4、在建立的液壓支架數(shù)學模型的基礎(chǔ)上,運用VisualC++6.0軟件開發(fā)工具編寫程序代碼,完成液壓支架動作的可視化界面設(shè)計。通過界面中圖形顯示區(qū)及參數(shù)輸出區(qū),確定相應(yīng)頂梁傾角及前搖桿水平傾角下液壓支架的姿態(tài)位置。迅速計算平衡千斤頂?shù)倪\動行程,程序能夠方便液壓支架的姿態(tài)調(diào)節(jié)。對于支架設(shè)計過程中主要參數(shù)的確定及相關(guān)元件的選擇提供有價值的參考信息。本論文利用計算機來對液壓支架進行仿真模擬及輔助計算,一方面,預(yù)測系統(tǒng)各方面的性能實現(xiàn)最優(yōu)化的參數(shù)匹配,提高支架運行速度;另一方面,通過設(shè)計輔助計算軟件快速得到相關(guān)參數(shù),為液壓支架相關(guān)結(jié)構(gòu)件的選擇及相對位置調(diào)節(jié)時所需進行的參數(shù)設(shè)定提供了有利信息,從而達到液壓控制系統(tǒng)性能的優(yōu)化,摒棄原有設(shè)計中不斷建立樣機、試驗、修改、再試驗的過程,大大地縮短了設(shè)計周期,減少了設(shè)計成本,并在一定程度上為支架穩(wěn)定運行及安全支護提供相關(guān)有價值的信息。
[Abstract]:China is a country with more coal and less oil. The proven coal reserves account for 33.8 percent of the world's coal reserves. Coal is in an important position in the disposable energy structure of our country. In order to improve the production efficiency of coal enterprises, hydraulic support is used as an important supporting equipment in mechanized fully mechanized mining face. It is very important to improve the operation performance and support performance (that is, the performance of hydraulic control system of hydraulic support and the precision of attitude control). In this paper, the main research work is as follows: 1. Firstly, the development of hydraulic support in China is introduced, and the research status of domestic and foreign hydraulic support is analyzed. This paper summarizes the problems existing in the hydraulic support at present, aiming at the problem that the moving speed of the hydraulic support in the domestic fully mechanized coal face is generally lower than that of the shearer at the present stage, which affects the working efficiency of the fully mechanized coal mining. In this paper, the power bond graph is used to derive the mathematical model of the system. On this basis, the simulation model of the hydraulic control system AMESim is built, and the dynamic characteristics of the hydraulic support are studied. The working parameters of hydraulic support, such as flow rate of pump station, lift and fall displacement of telescopic cylinder, overflow area of connection between telescopic cylinder and pipe, flow area of hydraulic control one-way valve, diameter of liquid supply pipe, etc, are optimized and matched. Finally, the lifting speed of the hydraulic support reached 0.57 m / s / s 0.56 m / s respectively, which was 17% higher than the original parameter. Parameter optimization greatly improves the moving speed of the hydraulic support. The movement state of the hydraulic support is analyzed theoretically, the kinematics model of the hydraulic support is established, and the mathematical model of the structure part of the hydraulic support is deduced on this basis. The mathematical expression of the important parameters, such as the position coordinates of the related hinge points, the inclination angle of the column, the inclination angle of the Jack, the inclination angle of the rear rocker, the inclination angle of the shield beam, the stroke of the Jack and so on, are expressed by mathematical functions. On the basis of the mathematical model of the hydraulic support, the mathematical model of the hydraulic support is established. The Visual C 6.0 software development tool is used to write the program code to complete the visual interface design of the hydraulic support action. The position of the hydraulic support under the inclined angle of the top beam and the horizontal dip angle of the front rocker is determined by the graphical display area and the output area of the parameters in the interface. Calculate the movement stroke of the balance Jack quickly, the program can facilitate the posture adjustment of the hydraulic support. It provides valuable reference information for the determination of the main parameters and the selection of related components in the design process. In this paper, the computer is used to simulate and calculate the hydraulic support. On the one hand, the performance of the prediction system is optimized to match the parameters, and the running speed of the support is improved, on the other hand, The related parameters can be obtained quickly by designing the assistant calculation software, which provides favorable information for the selection of the related structure parts of the hydraulic support and the setting of the parameters needed when the relative position is adjusted, so as to achieve the optimization of the performance of the hydraulic control system. The process of setting up prototype, testing, modifying and retesting continuously in the original design has greatly shortened the design period, reduced the design cost, and provided the relevant valuable information for the stable operation of the support and the safety support to a certain extent.
【學位授予單位】:太原科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD355.4
【參考文獻】
相關(guān)期刊論文 前10條
1 文治國;侯剛;王彪謀;任懷偉;趙國瑞;;兩柱掩護式液壓支架姿態(tài)監(jiān)測技術(shù)研究[J];煤礦開采;2015年04期
2 劉清;孟峰;牛劍峰;;放煤工作面支架姿態(tài)記憶控制方法研究[J];煤礦機械;2015年05期
3 趙龍;宋建成;田慕琴;許春雨;楊世華;于亞運;董光拽;尹衛(wèi)兵;趙旭東;;綜采工作面液壓支架集中控制系統(tǒng)設(shè)計[J];工礦自動化;2015年02期
4 房興才;薛煥煥;丁治國;;液壓支架應(yīng)用電液控制系統(tǒng)的簡析[J];科技創(chuàng)新導(dǎo)報;2015年04期
5 尉建輝;;液壓支架立柱焊接的胎具設(shè)計[J];中國高新技術(shù)企業(yè);2014年29期
6 王國法;;工作面支護與液壓支架技術(shù)理論體系[J];煤炭學報;2014年08期
7 王金鳳;翟雪琪;馮立杰;;面向安全硬約束的煤礦生產(chǎn)物流效率優(yōu)化研究[J];中國管理科學;2014年07期
8 朱南南;趙寶駒;王亞峰;;液壓支架合理選型分析[J];科技展望;2014年09期
9 張輝;渠繼剛;鄭四周;徐睿;胡偉元;;大傾角大采高綜采工作面倒架原因分析及防治措施[J];能源技術(shù)與管理;2013年05期
10 魏中良;廉自生;;電磁先導(dǎo)換向閥的流量性能研究[J];礦山機械;2013年08期
相關(guān)會議論文 前1條
1 王恩鵬;;我國綜采液壓支架現(xiàn)狀及發(fā)展趨勢[A];中國科協(xié)2004年學術(shù)年會第16分會場論文集[C];2004年
相關(guān)博士學位論文 前4條
1 胡波;液壓支架智能控制系統(tǒng)研究[D];太原理工大學;2014年
2 王保明;液壓支架關(guān)鍵元件內(nèi)部流動及系統(tǒng)工作特性研究[D];中國礦業(yè)大學;2011年
3 舒鳳翔;高端液壓支架液壓系統(tǒng)及關(guān)鍵元件研究[D];中國礦業(yè)大學;2009年
4 韓偉;液壓支架控制系統(tǒng)大流量閥與移架速度定量化研究[D];煤炭科學研究總院;2006年
相關(guān)碩士學位論文 前6條
1 張欣;我國煤礦行業(yè)工傷保險問題研究[D];安徽師范大學;2013年
2 史姣;大缸徑液壓支架液壓系統(tǒng)的仿真研究[D];太原科技大學;2012年
3 韓占冰;大傾角煤層走向長壁綜采工作面系統(tǒng)參數(shù)優(yōu)化研究[D];西安科技大學;2009年
4 楊濤;乳化液泵站液壓系統(tǒng)建模仿真與控制系統(tǒng)開發(fā)[D];太原理工大學;2008年
5 李鐵蓮;液壓支架中壓力變送器及其檢測系統(tǒng)研究[D];太原理工大學;2007年
6 寧桂峰;液壓支架三維動態(tài)設(shè)計與力學仿真研究[D];煤炭科學研究總院;2004年
,本文編號:2094189
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2094189.html