天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

基于“連續(xù)梁”模型的巷道頂板支護(hù)優(yōu)化

發(fā)布時間:2018-06-23 18:31

  本文選題:連續(xù)梁 + 矩形巷道 ; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文


【摘要】:葫蘆素礦隨著開采的推進(jìn)遇到了采掘接替緊張問題,巷道的掘進(jìn)速度滿足不了煤體的回采速度,原因在于頂板錨桿支護(hù)密度較大、時間較長。針對葫蘆素礦采掘失調(diào)問題提出了支護(hù)優(yōu)化方案。本文建立的“連續(xù)梁”模型是一個適用于求解中等穩(wěn)定及以上巷道頂板條件下頂板位移模型,通過“連續(xù)梁”模型的建立,希望為巷道頂板變形提供了一個量化的計算方法,同時給出了頂板破壞位移判據(jù)。通過“連續(xù)梁”模型的構(gòu)建,數(shù)值模擬及工業(yè)性實驗得出優(yōu)化方案的可行性,在研究過程中得到的結(jié)論如下:(1)矩形巷道圍巖應(yīng)力分布表達(dá)式。通過使用復(fù)變函數(shù)將矩形巷道轉(zhuǎn)化為圓形巷道進(jìn)行分析,通過圓形巷道圍巖結(jié)論反推矩形巷道圍巖應(yīng)力分布。塑性區(qū)寬度確定。通過對巷道開挖后圍巖分布與原有圍巖分布進(jìn)行分析,使用積分方法,帶入具體的巷道實測數(shù)據(jù)并通過坐標(biāo)轉(zhuǎn)化得出塑性區(qū)寬度的表達(dá)式。(2)“連續(xù)梁”模型的建立、分析、求解及穩(wěn)定性判斷。通過將巷道頂板巷道簡化,提煉出頂板梁模型,通過對兩端固支梁的分析利用積分法得出模型撓度求解表達(dá)式,并提出梁的破壞形式主要來源于大撓度位置的拉破壞,在此基礎(chǔ)上建立撓度破壞準(zhǔn)則。針對葫蘆素礦的具體地質(zhì)條件建立相應(yīng)的連續(xù)梁進(jìn)行求解,并分析不同支護(hù)形式下梁的撓度差異及不同梁厚度情況下梁撓度關(guān)系。得出優(yōu)化方案在位移上優(yōu)于原有支護(hù)方案。針對巷道頂板應(yīng)力分布及塑性區(qū)范圍的求解提供兩種思路,第一種理論推導(dǎo)法采用復(fù)變函數(shù)的方法。第二種數(shù)值模擬方法,建立相應(yīng)礦山的數(shù)值模擬采用彈性求解方法模擬出距頂板不同位置的圍巖應(yīng)力表達(dá)式,同時得出塑性區(qū)方法,此方法不僅簡化了計算,同時還提高了正確率。(3)采用數(shù)值模擬建立葫蘆素礦兩種支護(hù)方式的位移、應(yīng)力和塑性區(qū)的對比。在巷道頂板不同位置布置相應(yīng)的監(jiān)測點進(jìn)行監(jiān)測,通過云圖和監(jiān)測數(shù)據(jù)對比分析巷道沉降在不同高度隨巷道尺寸的一般規(guī)律,巷道沉降沿頂板方向的變化關(guān)系,圍巖應(yīng)力改變的相應(yīng)規(guī)律。通過優(yōu)化方案與原有支護(hù)方案的相應(yīng)位置對比發(fā)現(xiàn)優(yōu)化方案在位移、應(yīng)力和塑性區(qū)上都要優(yōu)于原有支護(hù)方案,從而證明了優(yōu)化方案的可行性。(4)通過對葫蘆素礦實驗巷道在表面位移監(jiān)測、壓力監(jiān)測和頂板離層窺視方面進(jìn)行工業(yè)性試驗,相比于原有支護(hù)方案優(yōu)化方案效果更加顯著,巷道整體維護(hù)情況良好。特別是優(yōu)化方案的實施對離層進(jìn)行了有效控制,得出大間排距方案是可行的。
[Abstract]:With the development of mining, Hulabu Mine has encountered the problem of mining replacement tension, and the tunneling speed of roadway can not meet the mining speed of coal body, the reason is that the roof bolting support density is high and the time is longer. Aiming at the problem of mining imbalance in Hulabu Mine, the support optimization scheme is put forward. The "continuous beam" model established in this paper is suitable for solving the roof displacement model under the condition of medium stability and above roadway roof. Through the establishment of "continuous beam" model, it is hoped to provide a quantitative calculation method for roadway roof deformation. At the same time, the criterion of roof failure displacement is given. Through the construction of continuous beam model, numerical simulation and industrial experiment, the feasibility of the optimization scheme is obtained. The conclusions in the study are as follows: (1) the stress distribution expression of surrounding rock in rectangular roadway. By using the complex variable function to transform the rectangular roadway into a circular roadway, the stress distribution of the surrounding rock in the rectangular roadway is deduced by the conclusion of the surrounding rock of the circular roadway. The width of plastic zone is determined. By analyzing the distribution of surrounding rock and original surrounding rock of roadway after excavation, using integral method, the actual measured data of roadway are brought into and the expression of plastic zone width is obtained through coordinate transformation. (2) the establishment and analysis of "continuous beam" model. Solving and judging stability. The roof beam model is abstracted by simplifying the roadway roof roadway, and the model deflection solution expression is obtained by using integral method through the analysis of the fixed beam at both ends. The failure form of the beam is mainly derived from the tensile failure in the large deflection position. On this basis, the deflection failure criterion is established. According to the specific geological conditions of Hulabu Mine, the corresponding continuous beam is established to solve the problem, and the deflection difference of beam under different support forms and the deflection relationship of beam with different beam thickness are analyzed. It is concluded that the optimized scheme is superior to the original support scheme in displacement. Two ideas are provided for solving the stress distribution of roadway roof and the range of plastic zone. The first method is based on complex variable function. The second kind of numerical simulation method is to establish the corresponding mine numerical simulation. The elastic solution method is used to simulate the stress expression of surrounding rock at different positions from the roof. At the same time, the plastic zone method is obtained, which not only simplifies the calculation, but also simplifies the calculation. At the same time, the accuracy is improved. (3) numerical simulation is used to establish the comparison of displacement, stress and plastic zone between the two support modes. Monitoring points are arranged in different positions of roadway roof. The general law of roadway settlement with different height with roadway size is analyzed by comparison of cloud map and monitoring data, and the relationship between roadway settlement and roof direction is analyzed. The corresponding law of stress change of surrounding rock. By comparing the corresponding position between the optimization scheme and the original support scheme, it is found that the optimized scheme is superior to the original support scheme in displacement, stress and plastic zone. Therefore, the feasibility of the optimization scheme is proved. (4) through the industrial tests on the surface displacement monitoring, pressure monitoring and roof separation peep-view of the experimental roadway in Hucurbitu Mine, the effect of the optimized scheme is more remarkable than that of the original support scheme. The overall maintenance of the roadway is in good condition. In particular, the implementation of the optimization scheme effectively controls the separation layer and concludes that the large spacing scheme is feasible.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD353

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 何新宏;;大型循環(huán)流化床鍋爐大比例摻燒煤泥研究[J];中國煤炭工業(yè);2016年12期

2 馮帆;黃萬朋;郭忠平;王亞軍;王二雨;;淺埋下向單一進(jìn)路巷道膠結(jié)充填頂板穩(wěn)定性分析[J];采礦與安全工程學(xué)報;2016年06期

3 樊克恭;呂衛(wèi)新;龍軍波;;深井厚煤層沿空巷道變形特征及支護(hù)技術(shù)研究[J];煤炭技術(shù);2016年09期

4 曹文貴;李鵬;唐旖旎;賀敏;;基于孔隙介質(zhì)特征的地基沉降分層總和分析方法[J];中國公路學(xué)報;2016年03期

5 何富連;施偉;武精科;;預(yù)應(yīng)力錨桿加長錨固應(yīng)力分布規(guī)律分析[J];煤礦安全;2016年01期

6 何滿潮;任曉龍;宮偉力;張曉虎;王春光;;礦山壓力對煤礦瓦斯涌出影響實驗分析及其控制[J];煤炭學(xué)報;2016年01期

7 潘一山;;煤與瓦斯突出、沖擊地壓復(fù)合動力災(zāi)害一體化研究[J];煤炭學(xué)報;2016年01期

8 賀永年;韓立軍;張后全;劉紅崗;;巖石劈裂與巖石破壞性質(zhì)的不穩(wěn)定性[J];巖石力學(xué)與工程學(xué)報;2016年01期

9 馬念杰;趙希棟;趙志強;李季;郭曉菲;;深部采動巷道頂板穩(wěn)定性分析與控制[J];煤炭學(xué)報;2015年10期

10 樊克恭;王亞軍;甄恩澤;馮帆;馬池帥;;深部沿空掘巷肩角錨桿破斷機理分析[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2015年10期

相關(guān)會議論文 前2條

1 李學(xué)華;侯朝炯;柏建彪;張農(nóng);;高應(yīng)力巷道圍巖應(yīng)力轉(zhuǎn)移技術(shù)與工程應(yīng)用研究[A];全國煤礦千米深井開采技術(shù)[C];2013年

2 方祖烈;;拉壓域特征及主次承載區(qū)的維護(hù)理論[A];世紀(jì)之交軟巖工程技術(shù)現(xiàn)狀與展望[C];1999年

相關(guān)碩士學(xué)位論文 前3條

1 陳斌;矩形巷道圍巖應(yīng)力彈性解與塑性區(qū)寬度研究[D];中國礦業(yè)大學(xué);2015年

2 任慶峰;深部高應(yīng)力軟巖巷道非對稱變形機理及控制對策研究[D];安徽理工大學(xué);2012年

3 李瑞鴿;全預(yù)應(yīng)力梁預(yù)應(yīng)力損失的動力檢測研究[D];華中科技大學(xué);2005年

,

本文編號:2058024

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2058024.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e9577***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com