天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

基于Kinect的人機(jī)交互技術(shù)及在礦井火災(zāi)逃生模擬系統(tǒng)中的應(yīng)用

發(fā)布時(shí)間:2018-06-22 22:44

  本文選題:虛擬煤礦火災(zāi) + Kinect人機(jī)交互; 參考:《山東科技大學(xué)》2017年碩士論文


【摘要】:隨著虛擬現(xiàn)實(shí)和Kinect人機(jī)交互技術(shù)的發(fā)展,Kinect越來越多的被應(yīng)用到體感游戲及大型場景展示上,用來與虛擬場景進(jìn)行互動(dòng)。本文主要研究了基于Kinect的人機(jī)交互技術(shù)及其在虛擬煤礦巷道火災(zāi)逃生模擬系統(tǒng)中的應(yīng)用。首先研究了整個(gè)系統(tǒng)的軟硬件配置,其次研究了如何利用Kinect捕捉人體深度圖像以及骨骼數(shù)據(jù);然后研究了基于深度圖像的正反手勢識(shí)別,以及基于骨骼數(shù)據(jù)的體態(tài)識(shí)別;最后研究了利用UE4創(chuàng)建虛擬巷道模型,用正反手勢控制巷道中人物的前后左右行走以及利用步態(tài)識(shí)別算法識(shí)別操作者的身份,并將該操作者的信息在虛擬巷道中顯示出來。在進(jìn)行正反手勢識(shí)別時(shí),首先利用Kinect for Window SDK 2.0的庫函數(shù)讀取深度信息,再利用閾值分割將手部區(qū)域分割出來,然后將手部圖像分為兩層:第一層為直立手指層,第二層為蜷縮手指層。對(duì)于直立手指層,先利用輪廓檢測算法檢測出手部輪廓,再利用凸包檢測算法識(shí)別出手指的個(gè)數(shù);對(duì)于蜷縮手指層,主要利用輪廓檢測算法檢測輪廓,有輪廓?jiǎng)t為正手,無輪廓?jiǎng)t為負(fù)手。最后把這兩層識(shí)別結(jié)果結(jié)合起來,實(shí)現(xiàn)正反手識(shí)別。步態(tài)識(shí)別也是先通過Kinect體感設(shè)備及Kinect for Windows SDK 2.0讀取骨骼數(shù)據(jù)。進(jìn)行識(shí)別之前,首先分析人走路的姿態(tài),提取特征向量。人走路時(shí)主要特征有速度,步長,各個(gè)肢體擺動(dòng)的幅度,本文中主要選擇10個(gè)肢體角度進(jìn)行分析。然后,畫出每個(gè)肢體角度隨時(shí)間變化的曲線,從中提取一個(gè)平均周期,并用多項(xiàng)式函數(shù)擬合。最后,用多項(xiàng)式的擬合參數(shù)作為特征,用KNN分類算法,與數(shù)據(jù)庫中的參數(shù)進(jìn)行匹配,識(shí)別出人的身份。
[Abstract]:With the development of virtual reality and Kinect human-computer interaction technology Kinect is more and more used in body sense games and large-scale scene display to interact with virtual scene. This paper mainly studies the human-computer interaction technology based on Kinect and its application in virtual mine tunnel fire escape simulation system. Firstly, the hardware and software configuration of the whole system is studied, secondly, how to capture the human depth image and bone data by Kinect, then the forward and negative gesture recognition based on the depth image and the posture recognition based on the bone data are studied. Finally, the virtual laneway model is created by using UE4, the forward and left walking of the characters in the roadway is controlled by positive and negative gestures and the identity of the operator is recognized by gait recognition algorithm, and the information of the operator is displayed in the virtual laneway. When using the library function of Kinect for window SDK 2.0 to read the depth information, the hand region is segmented by threshold segmentation, and then the hand image is divided into two layers: the first layer is the vertical finger layer. The second layer is the crouching finger layer. For the vertical finger layer, the contour detection algorithm is first used to detect the contour of the hand, and then the number of fingers is recognized by using the convex hull detection algorithm; for the curled finger layer, the contour detection algorithm is mainly used to detect the contour, while the contour is forehand. No contours are negative hands. Finally, the recognition results of the two layers are combined to realize forward and backhand recognition. Gait recognition also uses Kinect somatosensory devices and Kinect for SDK 2.0 to read bone data. Before recognition, the attitude of human walking is analyzed, and the feature vector is extracted. The main characteristics of human walking are speed, step size and swing amplitude of each limb. In this paper, 10 limb angles are selected for analysis. Then, the curve of each limb angle changing with time is drawn, from which an average period is extracted and fitted with polynomial function. Finally, the fitting parameters of the polynomial are used as the feature, and the KNN classification algorithm is used to match the parameters in the database to identify the identity of the person.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD752;TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 安葳鵬;孟衛(wèi)娟;屈星龍;;基于虛擬現(xiàn)實(shí)的煤礦大型設(shè)備培訓(xùn)系統(tǒng)研究[J];測控技術(shù);2016年10期

2 任大偉;劉陽;;煤礦井下逃生訓(xùn)練平臺(tái)的開發(fā)與評(píng)估[J];煤礦安全;2016年05期

3 孫紅;廖蕾;;基于OpenCV的多特征實(shí)時(shí)手勢識(shí)別[J];電子科技;2015年08期

4 吳曉雨;楊成;馮琦;;基于Kinect的手勢識(shí)別算法研究及應(yīng)用[J];計(jì)算機(jī)應(yīng)用與軟件;2015年07期

5 劉淑萍;劉羽;於俊;汪增福;;結(jié)合手指檢測和HOG特征的分層靜態(tài)手勢識(shí)別[J];中國圖象圖形學(xué)報(bào);2015年06期

6 范文婕;王命延;楊文姬;;基于深度圖像的指尖和掌心特征提取方法[J];計(jì)算機(jī)應(yīng)用;2015年06期

7 王松林;徐文勝;;基于Kinect深度信息與骨骼信息的手指尖識(shí)別方法[J];計(jì)算機(jī)工程與應(yīng)用;2016年03期

8 劉興亮;;互聯(lián)網(wǎng)的未來:聲音時(shí)代和體感時(shí)代[J];中國傳媒科技;2014年09期

9 魯明;王真水;田元;李琳;;一種基于Kinect的虛擬現(xiàn)實(shí)姿態(tài)交互工具[J];系統(tǒng)仿真學(xué)報(bào);2013年09期

10 李芳;肖洪;楊波;周亮;劉宇鵬;;三維數(shù)字校園的設(shè)計(jì)與實(shí)現(xiàn)[J];系統(tǒng)仿真技術(shù);2010年01期

相關(guān)碩士學(xué)位論文 前5條

1 劉飛;基于Kinect骨架信息的人體動(dòng)作識(shí)別[D];東華大學(xué);2014年

2 任建邦;基于Unity3D的手機(jī)游戲客戶端的設(shè)計(jì)與實(shí)現(xiàn)[D];北京交通大學(xué);2013年

3 羅娜;基于OpenCV的自然手勢識(shí)別與交互系統(tǒng)研究[D];廣東工業(yè)大學(xué);2012年

4 王理川;虛擬現(xiàn)實(shí)系統(tǒng)中全局光照實(shí)時(shí)渲染技術(shù)研究[D];上海交通大學(xué);2011年

5 王銳;基于虛擬現(xiàn)實(shí)技術(shù)的人機(jī)交互仿真系統(tǒng)開發(fā)與應(yīng)用[D];合肥工業(yè)大學(xué);2009年

,

本文編號(hào):2054517

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2054517.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f9700***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com