近距離煤層采空區(qū)下大采高綜采面覆巖活動規(guī)律研究
本文選題:礦山壓力 + 覆巖移動; 參考:《遼寧工程技術(shù)大學(xué)》2015年碩士論文
【摘要】:近距離煤層下行開采時,下位煤層頂板受上煤層開采時超前支撐壓力、采后解壓以及采空區(qū)重新壓實的影響,不再完整,上位覆巖結(jié)構(gòu)也由原來的完整巖層變?yōu)榭迓洹嗔褞r層,因此巖層移動和礦壓顯現(xiàn)將有別于單一煤層開采時的情況。論文綜合運用相似材料模擬,理論分析和現(xiàn)場監(jiān)測的方法研究近距離煤層下行開采時覆巖移動和礦壓顯現(xiàn)規(guī)律。首先根據(jù)測得的巖石物理力學(xué)參數(shù)搭建相似材料模型,布設(shè)測點,然后依次完成了903、904和1103工作面的開挖模擬工作,在開挖過程中運用數(shù)字圖像相關(guān)法記錄測點位移數(shù)據(jù)。然后對測點位移數(shù)據(jù)進(jìn)行聚類分析,得出受采動影響的垮落帶、裂隙帶和彎曲下沉帶的范圍。分析來壓規(guī)律,得出下煤層開采時初次來壓步距小于上煤層,周期來壓步距平均值小于上煤層,巖層斷裂線多位于工作面的前方。分析測點位移特點,得出下煤層開采時最大位移點滯后工作面的距離小于上煤層開采的滯后距離;單位采高對應(yīng)的覆巖下沉量大于上煤層開采時的對應(yīng)值;巖層移動存在外包絡(luò)線,最外側(cè)為關(guān)鍵層的位置。分析離層發(fā)育,得出下煤層開采時,水平方向離層率呈雙駝峰狀,峰值點處相對上煤層開采時變大,而采空區(qū)中部離層率相對上煤層開采時變;豎直方向離層率曲線呈兩峰三谷的雙駝峰狀,關(guān)鍵層位于峰值點右側(cè)的波谷區(qū)域。分析關(guān)鍵層位置,得出下煤層開采時關(guān)鍵層位置上移。通過對來壓規(guī)律和覆巖移動規(guī)律的分析,提出了近距離煤層下位煤層開采時“塊體-散體-內(nèi)壓力拱-砌體梁-外壓力拱”覆巖結(jié)構(gòu)模型,分析了各部分對礦壓顯現(xiàn)的影響;建立巖層斷裂線處離層發(fā)育模型,分析了離層厚度的影響因素。最后結(jié)合現(xiàn)場監(jiān)測,得出1103工作面9煤采空區(qū)下初次來壓步距平均值48.2m,周期來壓步距平均值18.6m,與相似材料模擬所得結(jié)論基本吻合。
[Abstract]:In the downgoing mining of close distance coal seam, the roof of the lower coal seam is no longer intact due to the influence of the leading supporting pressure, the decompression after mining and the re-compaction of the goaf during the mining of the upper coal seam, and the upper overburden rock structure has also changed from the original intact rock layer to the collapse. Fault strata, therefore, strata movement and rock pressure behavior will be different from the single coal seam mining situation. In this paper, similar material simulation, theoretical analysis and field monitoring are used to study the overburden movement and rock pressure behavior in the downlink mining of coal seam. The similar material model was built according to the measured rock physical and mechanical parameters and the measuring points were set up. Then the excavation simulation of 903904 and 1103 working faces was completed in turn. The displacement data of measured points were recorded by digital image correlation method in the excavation process. Then, the range of collapse zone, crack zone and bending subsidence zone affected by mining movement is obtained by cluster analysis of displacement data of measured points. By analyzing the law of coming pressure, it is concluded that the initial pressure step distance is smaller than the upper coal seam, the average value of the periodic pressure step distance is less than the upper coal seam, and the rock seam fracture line is mostly located in the front of the working face. By analyzing the displacement characteristics of the measuring points, it is concluded that the distance of the maximum displacement point lag face is smaller than that of the upper coal seam mining, the overburden subsidence corresponding to the unit mining height is larger than the corresponding value of the upper coal seam mining. Strata movement exists outer envelope, the outermost is the position of key layer. By analyzing the development of the separation layer, it is concluded that in the mining of the lower coal seam, the horizontal separation rate is like a double hump, the mining time varying at the peak point is larger than that in the upper coal seam, while in the middle of the goaf, the separation rate is smaller than that in the upper coal seam mining. The vertical separation rate curve is a double hump with two peaks and three valleys, and the key layer is located in the valley area to the right of the peak point. By analyzing the position of the key layer, it is concluded that the position of the key layer moves up when mining the coal seam. Based on the analysis of the law of pressure coming and the law of overburden movement, this paper puts forward the overburden structure model of "block-bulk-internal pressure arch-masonry beam-external pressure arch" when mining the coal seam in the lower position of short distance coal seam, and analyzes the influence of each part on the rock pressure behavior. The development model of dissociation layer at fault line is established, and the factors influencing the thickness of separated layer are analyzed. Finally, combined with field monitoring, it is obtained that the average initial pressure step distance is 48.2 m and the periodic pressure step distance is 18.6 m under the 9 coal goaf of 1103 working face, which is basically consistent with the conclusion obtained by similar material simulation.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD325;TD823.81
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 谷拴成;陳盼;王建文;王宏科;;采空區(qū)下煤層開采礦壓顯現(xiàn)規(guī)律實測研究[J];煤炭工程;2013年09期
2 鞠金峰;許家林;朱衛(wèi)兵;王路軍;;神東礦區(qū)近距離煤層出一側(cè)采空煤柱壓架機(jī)制[J];巖石力學(xué)與工程學(xué)報;2013年07期
3 楊寧;;基于模糊數(shù)學(xué)的煤礦風(fēng)險管理研究[J];煤炭經(jīng)濟(jì)研究;2012年03期
4 董金玉;楊繼紅;楊國香;伍法權(quán);劉紅帥;;基于正交設(shè)計的模型試驗相似材料的配比試驗研究[J];煤炭學(xué)報;2012年01期
5 張偉;;近距離煤層采空區(qū)下綜采工作面礦壓顯現(xiàn)規(guī)律[J];煤礦開采;2011年06期
6 許家林;鞠金峰;;特大采高綜采面關(guān)鍵層結(jié)構(gòu)形態(tài)及其對礦壓顯現(xiàn)的影響[J];巖石力學(xué)與工程學(xué)報;2011年08期
7 鄧雪杰;殷偉;張強(qiáng);安百富;;近距離煤層下行開采礦壓顯現(xiàn)規(guī)律相似模擬研究[J];煤礦開采;2011年03期
8 李瑞群;王智欣;;近距離煤層下層開采過集中煤柱礦壓顯現(xiàn)研究[J];神華科技;2011年02期
9 薛廣哲;任博玲;馮宇峰;;近距離煤層下層煤頂板結(jié)構(gòu)力學(xué)分析[J];煤礦安全;2011年02期
10 唐正宗;梁晉;肖振中;郭成;;用于三維變形測量的數(shù)字圖像相關(guān)系統(tǒng)[J];光學(xué)精密工程;2010年10期
,本文編號:2015301
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2015301.html