Elman神經(jīng)網(wǎng)絡(luò)在礦井突水水源判別中的應(yīng)用
本文選題:安全工程 + Elman神經(jīng)網(wǎng)絡(luò)。 參考:《安全與環(huán)境學(xué)報》2017年04期
【摘要】:礦井突水是礦建與生產(chǎn)過程中最具威脅的自然災(zāi)害之一,準(zhǔn)確判別突水水源是防治水害的關(guān)鍵。選取6種離子的質(zhì)量濃度作為突水水源的判別因素,將河南省焦作礦區(qū)不同水層的39組水化數(shù)據(jù)以2種樣本設(shè)計(jì)方案進(jìn)行Elman神經(jīng)網(wǎng)絡(luò)模型的構(gòu)建與檢驗(yàn)。以不同的35組水源樣品作為訓(xùn)練樣本,運(yùn)用Matlab軟件進(jìn)行Elman神經(jīng)網(wǎng)絡(luò)訓(xùn)練,將所建立的判別模型應(yīng)用于(相應(yīng)的)4組待測樣本的判別,并與DDA、FDA、Bayes三種判別方法的判別結(jié)果進(jìn)行分析比較。2種方案應(yīng)用結(jié)果表明:將具有非線性動態(tài)特征的Elman神經(jīng)網(wǎng)絡(luò)應(yīng)用于突水水源判別,在結(jié)合相應(yīng)的水文地質(zhì)條件前提下,可以準(zhǔn)確判斷突水來源;礦井多年的開采促使地下各水層水質(zhì)呈動態(tài)變化,Elman神經(jīng)網(wǎng)絡(luò)判別模型能夠反映這種變化特性,對探尋地下水運(yùn)移與演化具有一定的應(yīng)用價值。
[Abstract]:Mine water inrush is one of the most threatening natural disasters in the process of mine construction and production. The mass concentration of 6 kinds of ions was selected as the discriminant factor of water inrush water source, 39 groups of hydration data of different water layers in Jiaozuo mining area of Henan Province were constructed and tested by two different sample design schemes for Elman neural network model. Using 35 different water source samples as training samples and using Matlab software to train Elman neural network, the established discriminant model was applied to the discrimination of 4 groups of samples to be tested. Compared with the discriminant results of DDA-FDA-Bayes three discriminant methods, the application results of the two schemes show that Elman neural network with nonlinear dynamic characteristics is applied to the judgment of water inrush source under the premise of corresponding hydrogeological conditions. It can accurately judge the source of water inrush, and the mining of mine for many years makes the water quality of underground water layer dynamic change. Elman neural network discriminant model can reflect this kind of change characteristic, and has certain application value in exploring groundwater migration and evolution.
【作者單位】: 河南工程學(xué)院安全工程學(xué)院;武漢理工大學(xué)資源與環(huán)境工程學(xué)院;中南大學(xué)資源與安全工程學(xué)院;
【基金】:國家自然科學(xué)基金項(xiàng)目(51604091) “礦災(zāi)害預(yù)防與控制河南省高校重點(diǎn)實(shí)驗(yàn)室培育基地”建設(shè)經(jīng)費(fèi)資助項(xiàng)目(200925) 河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(16A440001,18A440010)
【分類號】:TD745.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前7條
1 蔡鑫;南新元;孔軍;;改進(jìn)Elman神經(jīng)網(wǎng)絡(luò)在氧化還原電位預(yù)測中的應(yīng)用[J];安徽大學(xué)學(xué)報(自然科學(xué)版);2014年02期
2 袁仁茂;馬鳳山;鄧清海;徐錫偉;;基于Elman型神經(jīng)網(wǎng)絡(luò)的金川二礦地表巖移時序預(yù)測模型[J];工程地質(zhì)學(xué)報;2008年01期
3 張瑋;張丹;;基于Elman動態(tài)神經(jīng)網(wǎng)絡(luò)的煤質(zhì)預(yù)測算法研究[J];中國礦業(yè);2013年03期
4 賈花萍;;灰色Elman神經(jīng)網(wǎng)絡(luò)的礦井瓦斯涌出量預(yù)測[J];計(jì)算機(jī)技術(shù)與發(fā)展;2014年06期
5 錢家忠;呂純;趙衛(wèi)東;潘婧;;Elman與BP神經(jīng)網(wǎng)絡(luò)在礦井水源判別中的應(yīng)用[J];系統(tǒng)工程理論與實(shí)踐;2010年01期
6 李建剛;任子暉;劉延霞;;基于Elman神經(jīng)網(wǎng)絡(luò)礦用通風(fēng)機(jī)故障診斷的研究[J];煤礦機(jī)械;2011年08期
7 王春曉;陳開巖;張寶;;基于Elman組合預(yù)測模型的瓦斯涌出量預(yù)測[J];黑龍江科技學(xué)院學(xué)報;2011年04期
,本文編號:2004023
本文鏈接:http://sikaile.net/kejilunwen/kuangye/2004023.html