天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 礦業(yè)工程論文 >

烴類捕收劑性能的量子化學(xué)計算與試驗研究

發(fā)布時間:2018-06-10 02:38

  本文選題: + 捕收劑 ; 參考:《太原理工大學(xué)》2015年碩士論文


【摘要】:煤炭洗選是潔凈煤技術(shù)的基礎(chǔ),就細(xì)粒煤分選而言,浮選是最有效的分選方法。浮選效果與浮選藥劑的選擇和使用有很大關(guān)系,高效合理的浮選藥劑能靈活地控制浮選過程,提高經(jīng)濟效益。浮選藥劑分子結(jié)構(gòu)與性能關(guān)系的研究,是開發(fā)高效新藥劑的前提。量子化學(xué)計算方法為研究浮選機理和設(shè)計新型浮選劑提供了一個良好的平臺。 論文采用量子化學(xué)計算Gaussian軟件建立了不同結(jié)構(gòu)的烴類捕收劑(烷烴、烯烴、芳烴)的結(jié)構(gòu)模型,采用密度泛函理論(DFT),在B3LYP/6-311G水平上對三類捕收劑的幾何構(gòu)型、凈電荷、前線分子軌道構(gòu)成等電子結(jié)構(gòu)參數(shù),以及烴類捕收劑與煤的吸附能等進(jìn)行了計算,從量子化學(xué)角度揭示了煤與藥劑的作用機理,并通過潤濕熱的測量和單元浮選試驗對計算結(jié)果進(jìn)行驗證。 以大同煤為研究對象,通過工業(yè)分析、紅外光譜分析、XPS分析等研究了煤樣性質(zhì),結(jié)果表明:煤樣為變質(zhì)程度較低的弱粘煤,表面O元素的含量較高,主要以-OH的形式存在。基于煤樣性質(zhì),選取次煙煤的結(jié)構(gòu)單元模型進(jìn)行量子化學(xué)計算。 選取碳原子數(shù)為12、14、16的烷烴、烯烴和芳烴類捕收劑為研究對象,采用量子化學(xué)計算Gaussian軟件建立其結(jié)構(gòu)模型,計算了它們的幾何構(gòu)型、凈電荷、前沿分子軌道構(gòu)成等電子結(jié)構(gòu)參數(shù)。結(jié)果表明:同系列烴類捕收劑,,碳鏈長度對其性能的影響不明顯。不同結(jié)構(gòu)烴類捕收劑,電荷分布、鍵長、鍵角等有一定的差距,導(dǎo)致其性質(zhì)有所不同;前線軌道能隙ΔELUMO-HOMO按烷烴、烯烴和芳烴依次減小,可以初步判斷其反應(yīng)活性為:烷烴<烯烴<芳烴。 采用量子化學(xué)計算Material Studio軟件計算了煤與幾種烴類捕收劑相互作用的吸附能。結(jié)果表明:烴類捕收劑與煤作用的吸附能均小于84kJ/mol,因此烴類捕收劑在次煙煤表面的吸附過程為物理吸附。吸附能越大,藥劑與煤表面的作用越強,不同結(jié)構(gòu)烴類捕收劑吸附能大小依次為:芳烴>烯烴>烷烴。 吸附過程中產(chǎn)生的吸附熱反映了捕收劑與礦物作用的強弱,采用C80微量熱儀測定了不同捕收劑與煤作用的潤濕熱,結(jié)果表明煤與烴類捕收劑潤濕熱的大小依次為:芳烴>烯烴>烷烴。 通過不同捕收劑用量的單元浮選試驗,得到了精煤產(chǎn)率、精煤灰分、可燃體回收率、浮選完善度等浮選指標(biāo)。結(jié)果表明:在藥劑用量相同條件下,精煤產(chǎn)率、可燃體回收率、浮選完善的大小依次為:芳烴>烯烴>烷烴。 C80微量熱儀對捕收劑與煤作用的潤濕熱測定以及煤泥浮選試驗結(jié)果均表明:碳原子數(shù)相同的不同結(jié)構(gòu)烴類捕收劑的捕收性能為芳烴>烯烴>烷烴,但是同系列藥劑中,碳原子數(shù)增加,藥劑粘度增大,在礦漿中分散度降低,浮選效果變差,受藥劑粘度的影響,同系列捕收劑浮選試驗中,藥劑性質(zhì)隨碳原子數(shù)呈相反規(guī)律。 量子化學(xué)計算與試驗相結(jié)合的研究方法,為煤泥浮選藥劑的研究與開發(fā)提供了新的技術(shù)途徑。
[Abstract]:Coal washing is the basis of clean coal technology. Flotation is the most effective separation method for fine coal separation. The effect of flotation is closely related to the selection and use of flotation reagents. High efficiency and reasonable flotation reagents can control the flotation process flexibly and improve the economic benefit. The study of the relationship between the molecular structure and performance of the flotation agent is a high development. The quantum chemical calculation method provides a good platform for studying the flotation mechanism and designing new flotation agents.
The structure model of hydrocarbon collector (alkane, alkene, aromatics) of different structures was established by quantum chemical calculation Gaussian software. The geometric configuration of three collectors, net charge, the composition of frontline molecular rail, and the absorption of hydrocarbon collector and coal were established by the density functional theory (DFT). The effect mechanism of coal and drug is revealed from the angle of quantum chemistry, and the results are verified by the measurement of wet heat and the unit flotation test.
Taking Datong coal as the research object, the properties of coal samples are studied by industrial analysis, infrared spectrum analysis and XPS analysis. The results show that the coal samples are weak coal with low metamorphic degree, the content of O elements on the surface is higher, mainly in the form of -OH. Based on the properties of coal samples, the structure unit model of secondary bituminous coal is selected for quantum chemical calculation.
The alkane, olefins and aromatics collector are selected as the research object of 12,14,16. The structural models of their geometric configuration, net charge and frontier molecular orbit are calculated by the quantum chemical calculation Gaussian software. The results show that the same series of hydrocarbon collectors and the carbon chain length have a shadow on their properties. The properties of hydrocarbon collector in different structure, charge distribution, bond length and bond angle are different, and the front orbital energy gap Delta ELUMO HOMO decreases in order of alkanes, olefins and aromatics, which can be preliminarily judged as alkanes < olefins < aromatics.
The adsorption energy of coal and several hydrocarbon collectors was calculated by quantum chemical calculation Material Studio software. The results show that the adsorption energy of hydrocarbon collector and coal is less than 84kJ/mol, so the adsorption process of hydrocarbon collector on the surface of sub bituminous coal is physical adsorption. The greater the adsorption energy, the stronger the effect of the agent and the surface of coal. The adsorption energy of hydrocarbon collector with different structures is: aromatics > olefins > alkanes.
The adsorption heat produced during the adsorption process reflects the strength of the collectors and minerals. The wet heat of different collectors and coal is measured by C80 microcalorimeter. The results show that the size of wet heat of coal and hydrocarbon collectors is aromatics > alkenes > alkanes.
Through the unit flotation test of different collector dosage, the flotation indexes such as the yield of refined coal, the ash of the coal, the recovery of the combustibles and the perfection of the flotation have been obtained. The results show that, under the same dosage, the yield of the coal, the recovery rate of the flammable body, and the perfect size of the floatation are aromatics > alkenes > alkanes.
The results of wet heat determination of collectors and coal by C80 microcalorimeter and the test results of coal slime flotation show that the collecting properties of different hydrocarbon collectors with the same number of carbon atoms are aromatics > alkenes > alkanes, but in the same series of chemicals, the number of carbon atoms increases, the viscosity of the reagent increases, the dispersion degree decreases in the pulp and the flotation effect becomes worse. In the flotation test of series collector, the nature of the reagent is contrary to the number of carbon atoms.
The combination of quantum chemistry calculation and experiment provides a new technical way for the research and development of coal flotation reagents.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TD923.13;TD94

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 段旭琴;王祖訥;;煤顯微組分表面含氧官能團(tuán)的XPS分析[J];遼寧工程技術(shù)大學(xué)學(xué)報(自然科學(xué)版);2010年03期

2 董宏軍,陳藎;硅線石與捕收劑作用機理的量子化學(xué)研究[J];廣東有色金屬學(xué)報;1995年01期

3 謝惠定;郭蘊蘋;黃燕;;Gaussian03/GaussView在紅外光譜教學(xué)中的應(yīng)用[J];光譜實驗室;2010年01期

4 鐘建蓮;陳建華;李玉瓊;郭進(jìn);;硫鐵礦晶體化學(xué)及前線軌道研究[J];廣西大學(xué)學(xué)報(自然科學(xué)版);2011年03期

5 龍威;;理論研究中的量子化學(xué)計算方法[J];寧夏師范學(xué)院學(xué)報;2010年03期

6 顏玲玲;殷志剛;蔣玉仁;;2-羥肟基正壬酸對一水硬鋁石的浮選脫硅性能[J];廣州化學(xué);2010年03期

7 葉學(xué)民;王歡;馬少棟;李春曦;;表面活性劑溶液潤濕性質(zhì)的實驗研究進(jìn)展[J];華北電力大學(xué)學(xué)報(自然科學(xué)版);2011年03期

8 胡宗球;分子軌道理論中的一些能量關(guān)系[J];湖北師范學(xué)院學(xué)報(自然科學(xué)版);1992年06期

9 唐立中 ,陳爾廷;前線軌道理論[J];河南師大學(xué)報(自然科學(xué)版);1982年02期

10 趙振民;;關(guān)于量子化學(xué)從頭計算法及高斯98程序包計算結(jié)果的精度評述[J];原子核物理評論;2006年03期

相關(guān)博士學(xué)位論文 前1條

1 魏明安;黃銅礦和方鉛礦浮選分離的基礎(chǔ)研究[D];東北大學(xué);2008年



本文編號:2001690

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/kuangye/2001690.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶38b39***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com