黔西上二疊統(tǒng)龍?zhí)督M煤的礦物學(xué)及地球化學(xué)特征研究
本文選題:黔西 + 龍?zhí)督M。 參考:《中國(guó)地質(zhì)大學(xué)》2015年博士論文
【摘要】:本文主要運(yùn)用煤化學(xué)、礦物學(xué)和地球化學(xué)的理論和方法,基于對(duì)重點(diǎn)礦區(qū)的取樣分析和研究區(qū)勘探成果資料和已發(fā)表的文獻(xiàn)資料的大量統(tǒng)計(jì)數(shù)據(jù)的歸納總結(jié),系統(tǒng)研究了黔西上二疊統(tǒng)龍?zhí)督M煤的煤化學(xué)、礦物學(xué)和地球化學(xué)特征,確定了黔西煤的煤質(zhì)特征、礦物學(xué)特征和地球化學(xué)特征,并探討了異常富集元素的分布特征和成因機(jī)理。主要認(rèn)識(shí)如下:1、煤化學(xué)黔西煤主要以特低水分含量、低-中灰和低中揮發(fā)分產(chǎn)率、中高硫含量煤為特征。黔西煤灰分產(chǎn)率平均23%,受盆緣陸源碎屑和盆心海水侵入的影響,向盆地邊緣和盆地中心灰分產(chǎn)率呈增高趨勢(shì)。灰分產(chǎn)率自龍?zhí)督M下部-中部-上部表現(xiàn)出高-低-高的變化趨勢(shì),對(duì)應(yīng)于海平面升-降-升的變化趨勢(shì),揭示灰分的高低與海平面變化密切相關(guān)。由西向東揮發(fā)分產(chǎn)率由低中揮發(fā)分過(guò)渡為特低揮發(fā)分,再過(guò)渡為低中揮發(fā)分產(chǎn)率,主要受區(qū)域熱變質(zhì)作用的影響,中部煤的變質(zhì)程度的增高與含煤地層上覆地層厚度增大有關(guān)。煤中硫主要以黃鐵礦硫?yàn)橹。硫分含量自北西向南東逐漸增高,依次由陸相區(qū)的低硫煤過(guò)渡到過(guò)渡相的中硫-高硫煤和海相區(qū)的高硫煤。硫分含量自龍?zhí)督M下部-中部-上部表現(xiàn)出高-低-高的變化趨勢(shì),此與黔西地區(qū)龍?zhí)督M沉積期海平面升-降-升的變化趨勢(shì)相吻合。故黔西煤中硫分含量受控于海平面的變化。2、煤礦物學(xué)煤中的礦物以石英、黃鐵礦和累托石為主,高嶺石、伊利石和白鐵礦次之,含少量的銳鈦礦、蒙脫石、石膏、坡縷石、鐵白云石、綠泥石、鈉長(zhǎng)石、纖鐵礬和四水白鐵礬,與以前發(fā)表過(guò)有關(guān)該地區(qū)煤中富石英和硫化物的分布特征基本一致。受不同地質(zhì)因素的影響,不同礦區(qū)或相同礦區(qū)不同煤層的礦物種類及含量存在很大差異。在織金鳳凰山煤礦和文家壩煤礦,研究煤樣具有特低揮發(fā)分產(chǎn)率(8.1%),出現(xiàn)三種與熱變質(zhì)成因有關(guān)的礦物組合,即累托石+黃鐵礦組合、高嶺石+累托石+石英+黃鐵礦組合以及石英+累托石組合;在六枝六龍煤礦,研究煤樣具有低揮發(fā)分產(chǎn)率(18.5%),出現(xiàn)石英+高嶺石組合以及石英+伊利石+黃鐵礦+白鐵礦組合。在煤層中,石英、伊利石、高嶺石、硫化物和銳鈦礦接近頂板、底板或夾矸層位富集,揭示物源供給強(qiáng)度對(duì)其具有重要控制作用;碳酸鹽礦物出現(xiàn)于碎屑成因礦物(伊利石,銳鈦礦)含量較低的煤分層樣品中,說(shuō)明碎屑物質(zhì)輸入對(duì)方解石的形成起阻礙作用;累托石來(lái)源于煤變質(zhì)過(guò)程中高嶺石向累托石的轉(zhuǎn)化,揭示其為熱變質(zhì)成因;黃鐵礦的形成受控于源區(qū)物源供給強(qiáng)度、海水影響和沼澤pH條件。煤層中出現(xiàn)兩種賦存方式的伊利石,即碎屑伊利石和同生伊利石。碎屑伊利石中鈦含量較高,而同生伊利石鈦含量很低;累托石以裂隙和細(xì)胞充填物方式存在;綠泥石與累托石共存于裂隙之中;黃鐵礦以球形多晶草莓狀黃鐵礦、細(xì)胞充填黃鐵礦、放射狀黃鐵礦晶體、有機(jī)質(zhì)基質(zhì)中的塊狀黃鐵礦、它形分散狀黃鐵礦和充填裂隙的黃鐵礦的形式存在,前三種賦存方式指示了黃鐵礦的同生成因,后三種賦存方式指示其為次生成因;部分鐵硫酸鹽礦物與伊利石共存于細(xì)胞充填物中,這并不代表鐵硫酸鹽礦物的同生成因,而是細(xì)胞充填黃鐵礦的氧化產(chǎn)物。部分鐵硫酸鹽礦物聚集于割理/裂隙附近,可能與低溫?zé)嵋毫黧w沿這些滲透性通道侵入而導(dǎo)致先前黃鐵礦的氧化有關(guān);石膏也簇集于割理/裂隙周邊,其為方解石和硫酸(硫化物氧化而來(lái))反應(yīng)產(chǎn)物。含有Si和A1成分的石膏的成因可能與石膏形成過(guò)程中流體沉淀的鋁硅酸鹽礦物(尺寸小于EDX光束范圍)被包含于石膏晶體中有關(guān)。3、煤地球化學(xué)所研究的煤層樣品常量元素以SiO2、Al2O3和Fe203為主體。除六枝六龍煤礦3號(hào)煤中富集K20和輕度富集Ti02,織金文家壩煤礦7號(hào)煤中K20含量輕度富集外,其他所采煤層中的常量元素含量與中國(guó)煤均值相似或虧損。黔西煤的常量元素均值與中國(guó)煤均值相似,但黔西地區(qū)黔北煤田煤輕度富集CaO和MgO以及興義煤田煤輕度富集K2O。六枝六龍煤礦3號(hào)煤層富集Ta、Nb、V、Cr、Co、Cu、Sr、Nb和Ba,織金鳳凰山煤礦23號(hào)煤層富集Li、Se、Nb、Mo和Ta以及27號(hào)煤層富集Se、Nb、Mo、Ta和U,織金文家壩煤礦6號(hào)煤層富集Ta和Li以及7號(hào)煤層富集Ta和Nb外,其他微量元素含量與中國(guó)煤微量元素含量均值相似或虧損。從已發(fā)表的有關(guān)黔西煤的統(tǒng)計(jì)資料來(lái)看,主要富集V、Cu、Mo、Sb、Ta、U、As和Hg,其他微量元素與中國(guó)煤均值相似或虧損;不同煤田煤中微量元素含量存在一定差異,黔北煤田煤富集Cu、Zn、Nb,織納煤田煤富集V、Cu、Nb、 Mo、U和Ta,六盤水煤田煤富集V、Ni、Cu、Sb、Ta、U和Hg以及興義煤田煤富集Li、V、Cr、Ni、Cu、Sn、Sb、Ta、U、F、As、Mo、Cd和Hg。六枝六龍煤礦煤層中的大多數(shù)微量元素(Be、B、Sc、V、Cr、Co、Ni、Cu、Zn、Ga、 Se、Rb、Sr、Y、Zr、Nb、Sn、Cs、Ba、REE、Hf、Ta、Pb、Th和U)表現(xiàn)出鋁硅酸鹽親和性,Hg、As和Mo主要賦存于硫化物中;織金鳳凰山煤礦煤層中的大多數(shù)微量元素(Sc、 V、Cr、 Co、Ni、Zn、Ga、Rb、Sr、Zr、Nb、Sn、Ba、REE、Hf和Ta)表現(xiàn)出鋁硅酸鹽親和性,Cu、As、Se、Sb、Pb和Hg主要賦存于硫化物中;織金文家壩煤礦煤層中的大多數(shù)微量元素(Be、Sc、V、Cr、Co、Ni、Ga、Rb、Sr、Zr、Nb、Sn、Ba、REE、Hf、Ta和W)表現(xiàn)出鋁硅酸鹽親和性,Hg、Pb和Mo主要賦存于硫化物中。上述三個(gè)煤礦煤層中的Mn出現(xiàn)于碳酸鹽礦物中。黔西煤中異常富集元素主要包括Ta、Nb、As、Hg、F和Mo。Nb和Ta主要賦存于鋁硅酸鹽礦物或重礦物,其異常富集區(qū)沿水城-紫云同沉積斷裂分布,此位置與六枝-水城-帶的三角洲朵體相重疊,此歸因于龍?zhí)督M沉積期,北西-南東向展布的水城-紫云同沉積斷裂為黔西地區(qū)北西方向碎屑物源的輸入提供了便利的通道,碎屑物質(zhì)沿此斷裂搬運(yùn)而進(jìn)入沼澤;As、Hg、F和Mo主要賦存于硫化物中,其異常富集區(qū)主要分布于黔西南的興義、興仁、安龍和貞豐等地區(qū),該區(qū)位于由北西-南東向的水城-紫云同沉積斷裂、北東-南西向的師尊-貴陽(yáng)斷裂和冊(cè)亨弧形斷裂所夾持的近似三角區(qū)域,這些斷裂為同期和后期流體活動(dòng)和巖漿熱液的活動(dòng)提供了便利的通道。由此可見,構(gòu)造背景決定了異常富集元素的分布范圍。峨眉山玄武巖性質(zhì)和物源供給強(qiáng)度是黔西煤中V、Cr、Co、Ni、Cu、Nb和Ta富集的主控因素;黔西煤中硫及親硫化物元素的富集受控于峨眉山玄武巖性質(zhì)、海水影響和還原條件的共同作用;黔西煤中異常富集的As、Hg、F和Mo受控于后期熱液流體的控制。
[Abstract]:In this paper, based on the theory and method of coal chemistry, mineralogy and geochemistry, the coal chemistry, mineralogy and geochemistry of the upper two Longtan Formation coal in the upper two series are systematically studied, based on the summary of the sampling analysis of the key mining areas and the data of the exploration results and the published literature. The coal quality characteristics, mineralogical characteristics and geochemical characteristics of Qianxi coal, and discuss the distribution characteristics and genetic mechanism of abnormal enrichment elements. The main understanding is as follows: 1, coal chemical Qianxi coal is mainly characterized by low water content, low medium to medium ash and low middle volatile yield, high sulfur content coal as the characteristic. The average yield of coal ash in Qianxi is 23%, and by basin margin land The ash yield of the basin edge and basin center is increased by the influence of source debris and basin heart sea water intrusion. The ash yield is high to low high in the lower part of the Longtan Formation and the upper part of the middle and upper part of the basin. It corresponds to the trend of the Yu Hai plane ascending and descending, which reveals that the ash content is closely related to the change of sea level. The rate of transition from low and medium volatiles to low volatile, and then transition to low middle volatile yield is mainly affected by regional thermal metamorphism. The increase of the degree of metamorphism in central coal is related to the increase of overlying strata thickness in coal bearing strata. The sulfur content in coal is mainly pyrite sulfur. The sulfur content is increasing from North West to South East, and in turn from continental facies area. The sulfur content in the lower part of the Longtan Formation and the upper part of the Longtan Formation is high to low high, which is consistent with the trend of the sea level elevation drop and rise in the Longtan Formation Period of Qianxi, so the sulfur content in Qianxi coal is controlled by the change of Yu Hai plane.2, coal mine. The minerals in the coal are mainly quartz, pyrite and rectorite, kaolinite, illite and white iron ore, with a small amount of anatase, montmorillonite, plaster, palygorskite, ferric dolomite, chlorite, sodium feldspar, ferric alum, and four water white ferric alum, which are basically consistent with the distribution characteristics of quartz and sulfide in coal in the area previously published. Different geological factors have great differences in the mineral species and content of different coal mines in different mining areas or in the same mining area. In Zhijin Lantau Peak coal mine and Wen Jia dam coal mine, the research coal samples have very low volatile yield (8.1%), and there are three kinds of mineral assemblages related to the thermal metamorphism, that is, the combination of Rectorite + pyrite, kaolinite + Rectorite The combination of quartz + pyrite and quartz + rectorite. In the six branch of six Dragon coal mine, coal samples have low volatile yield (18.5%), quartz + kaolinite combination and quartz + illite + pyrite + white iron ore. In coal seam, quartz, illite, kaolinite, sulfide and anatase are close to the roof, and the floor or gangue layer is enriched. It is revealed that the supply intensity of the material source has an important control effect on it, and the carbonate minerals appear in the stratified samples with low content of the detrital minerals (illite and anatase), indicating that the detrital material is obstructed by the formation of the other rock, and that the rectorite is derived from the transformation of kaolinite to the rectorite in the coal metamorphic process and reveals that it is hot. The formation of the pyrite is controlled by the source strength of the source, the influence of the sea water and the pH conditions of the marshes. There are two types of illite in the coal seam, that is, the detrital illite and the same illite. The titanium content in the clastic illite is high, but the content of the titanium is very low; the rectorite exists in the way of fissure and cell filling. The chlorite and rectorite coexist in the fissures, and the pyrite is spherical polycrystalline strawberry pyrite, the cells fill pyrite, the radial pyrite crystal, the massive pyrite in the organic matrix, the form of its dispersed pyrite and the pyrite filling the fissure, and the first three modes of occurrence indicating the genesis of the pyrite. The latter three modes of occurrence indicate that they are secondary causes. Part of the iron sulfate minerals and illite coexist in the cell filling, which does not represent the syngenetic cause of the iron sulfate minerals, but the cells fill the oxide products of the pyrite. The penetration of the permeable channel leads to the oxidation of the previous pyrite, and the gypsum is also clustered around the cleat / fissure, which is the reaction product of calcite and sulphuric acid (sulfide oxidation). The genesis of the gypsum containing Si and A1 may be included with the aluminosilicate mineral (the size less than EDX beam size) of the fluid precipitated during the formation of the gypsum. In gypsum crystal, the constant elements of coal seam samples studied by.3 and coal geochemistry are mainly composed of SiO2, Al2O3 and Fe203. Except for the concentration of K20 in No. 3 coal and the mild enrichment of Ti02 in No. 3 coal of the coal mine of six branch and six Dragon coal mine, the content of the constant elements in the coal seam 7 of the Zhijin Wen Jia Ba coal mine is slightly enriched, and the content of the constant elements in the other coal seam is similar to the average of the Chinese coal. The average element of the Qianxi coal is similar to that of the Chinese coal, but the coal concentration in the Qianxi coal field is slightly enriched with CaO and MgO, and the coal mine of Xingyi coal is enriched with K2O. six branch and six Dragon coal mine 3 coal seams enriched Ta, Nb, V, Cr, Co, Cu, Sr, Nb and Ba, enrichment and enrichment of coal seam No. 23, Zhijin Lantau Peak coal mine And U, the coal seam No. 6 of Wen Jia Ba coal mine, Zhijin, enriched Ta, Li and No. 7 coal seams enriched Ta and Nb. The contents of other trace elements and Chinese coal trace elements are similar or loss. From the published statistics on coal in Qianxi, the main enrichment of V, Cu, Mo, Sb, Ta, U, As and depletion, the other trace elements are similar to or loss of the Chinese coal. Liupanshui coal field coal enriched Cu, Zn, Nb, and coal field coal enriched V, Cu, Nb, Mo, U and Ta in the coal field coal of the north of Guizhou. V, Cr, Co, Ni, Cu, Zn, Ga, Se, Rb, Sr, Y, exhibiting aluminum silicate affinity. The most trace elements (Be, Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Zr, Nb, Sn, Nb, Ga, Rb, Zr, Nb, Ga, Rb, Sr, Zr, Nb) in the coal coal mine of the Wen Jia Ba coal mine are found in the sulphides. The three coal coal seams above appear in the carbonate minerals. The abnormally enriched elements in the coal of Qianxi are the main elements. Ta, Nb, As, Hg, F and Mo.Nb and Ta are mainly deposited in aluminosilicate minerals or heavy minerals, and their abnormal enrichment areas are distributed along the Shuicheng Ziyun synsedimentary fault. This position overlaps with the Delta Zone of the six branch - Shuicheng zone, which is attributable to the sedimentary period of the Longtan Formation, and the northwestern South East is distributed in the Shuicheng Ziyun synsedimentary fault to the North West of Qianxi region. As, Hg, F and Mo are mainly located in sulfides, and their abnormal enrichment areas are mainly distributed in Xingyi, Xingren, an dragon and Zhenfeng in southwestern Guizhou, and the area is located in the Shuicheng Ziyun synsedimentary fault from the North West to the East and north-east NW. The master - Guiyang fault and the approximate trigonometric zone held by the brotherhood arc fracture, which provide a convenient channel for the fluid activity and the activity of the magmatic hydrothermal fluid at the same time and later, can be seen that the tectonic setting determines the distribution of the abnormal enrichment elements. The properties of the Mount Emei basalt and the supply strength of the source are V, Cr, C in the coal. The main controlling factors of the enrichment of O, Ni, Cu, Nb and Ta; the accumulation of sulfur and sulphide elements in Qianxi coal are controlled by the properties of Mount Emei basalt, the influence of seawater and the reduction conditions, and the abnormal enrichment of As, Hg, F and Mo in the coal of Qianxi is controlled by the later hydrothermal fluid.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:P618.11
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李海立;皖南龍?zhí)督M植物群的時(shí)代探討[J];淮南礦業(yè)學(xué)院學(xué)報(bào);1983年01期
2 姚兆奇 ,李成棟;龍?zhí)督M的定義和時(shí)代[J];地層學(xué)雜志;1984年03期
3 胡世忠;關(guān)于龍?zhí)督M的下界[J];中國(guó)地質(zhì);1984年02期
4 宋漢卿;萍樂(lè)坳陷西部龍?zhí)督M官山段中的灰?guī)r[J];煤田地質(zhì)與勘探;1986年05期
5 胡世忠;;對(duì)龍?zhí)督M定義及其劃分原則的商榷[J];中國(guó)區(qū)域地質(zhì);1989年01期
6 楊朝榮;;蘇南地區(qū)龍?zhí)督M的分區(qū)及對(duì)比[J];江蘇地質(zhì);1991年04期
7 王文耀;蘇浙皖地區(qū)的龍?zhí)督M[J];地層學(xué)雜志;1993年03期
8 蘇勤;開田沖地區(qū)龍?zhí)督M巖石學(xué)特征及其意義[J];中國(guó)煤田地質(zhì);1998年03期
9 錢讓清,楊曉勇;安徽二疊紀(jì)龍?zhí)督M煤中潛在毒害元素分布的因子分析研究[J];煤田地質(zhì)與勘探;2003年01期
10 龔玉紅,劉榮登,,彭正奇,周春光;再論湘中南區(qū)龍?zhí)督M的時(shí)代[J];中國(guó)煤田地質(zhì);1996年02期
相關(guān)會(huì)議論文 前2條
1 李娟;于炳松;夏響華;孫全宏;田玉昆;馬勇勝;;黔西北地區(qū)上二疊統(tǒng)龍?zhí)督M泥頁(yè)巖儲(chǔ)層特征[A];中國(guó)地質(zhì)學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要匯編——S13石油天然氣、非常規(guī)能源勘探開發(fā)理論與技術(shù)分會(huì)場(chǎng)[C];2013年
2 馮志明;;川南煤田古敘礦區(qū)龍?zhí)督M地層層序及聚煤特征[A];四川省煤田地質(zhì)局論文集[C];2010年
相關(guān)重要報(bào)紙文章 前2條
1 王翔 張建華;龍?zhí)督M——63戶村民搬進(jìn)“生態(tài)民居”[N];畢節(jié)日?qǐng)?bào);2009年
2 劉樂(lè)柱;科學(xué)鉆進(jìn)打造優(yōu)質(zhì)工程[N];中煤地質(zhì)報(bào);2006年
相關(guān)博士學(xué)位論文 前1條
1 李寶慶;黔西上二疊統(tǒng)龍?zhí)督M煤的礦物學(xué)及地球化學(xué)特征研究[D];中國(guó)地質(zhì)大學(xué);2015年
相關(guān)碩士學(xué)位論文 前5條
1 黃建國(guó);黔西南二疊系龍?zhí)督M含金建造的初步研究[D];貴州大學(xué);2007年
2 陳順勇;下?lián)P子黃橋地區(qū)溪橋構(gòu)造帶二疊系龍?zhí)督M儲(chǔ)層特征及油氣成藏期研究[D];南京大學(xué);2014年
3 白靈麒;蘇浙皖地區(qū)龍?zhí)督M暗色巖系頁(yè)巖氣潛力研究[D];南京大學(xué);2012年
4 徐猛;湘東南坳陷上二疊統(tǒng)龍?zhí)督M頁(yè)巖氣研究[D];成都理工大學(xué);2013年
5 孫全宏;黔西北地區(qū)龍?zhí)督M頁(yè)巖氣形成條件與分布預(yù)測(cè)[D];中國(guó)地質(zhì)大學(xué)(北京);2014年
本文編號(hào):1946679
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1946679.html