上榆泉礦10~#煤層順向煤柱下礦壓顯現規(guī)律研究
本文選題:近距離煤層 + 大采高綜放; 參考:《太原理工大學》2017年碩士論文
【摘要】:近距離煤層在我國較為普遍,分布廣泛。我國煤礦大都使用長壁、下行開采方法,且使用全部垮落法管理頂板,這引起了很多采空區(qū)下近距離煤層的開采問題,也越來越受到人們的重視。近距離煤層大采高綜放開采,由于煤層開采厚度很大,相對于普通采高,圍巖活動范圍明顯增大,頂煤采出后,容易垮落的巖層在短時間內無法充滿采空區(qū),傳統(tǒng)意義上的基本頂在這種情況下無法形成穩(wěn)定的“砌體梁”結構,轉化為直接頂巖層,形成類似于“懸臂梁”結構。上覆巖層結構以及層間頂板的完整性和強度在上煤層開采時已經受到損傷,下煤層開采時,圍巖應力受到二次采動影響會引起一系列新的礦山壓力現象,比如工作面更容易出現頂板冒漏和壓架事故。受上煤層遺留的順向煤柱應力集中的影響,煤柱下采場空間支架載荷通常都很大,工作面煤壁片幫嚴重,支架容易出現低頭、損壞和壓架等現象,圍巖更難控制。本文以上榆泉煤礦10~#煤層I031001綜放面為研究對象,分析采空區(qū)下和煤柱下上覆巖層結構特征和礦山壓力顯現規(guī)律。將兩者進行對比研究,研究結果表明:(1)根據煤層覆巖條件和開采方法,分析下煤層開采時上覆巖層破斷、垮落和穩(wěn)定情況,得出采空區(qū)下上覆巖層形成“頂煤+直接頂巖層+基本頂巖層+垮落帶巖層+裂隙帶巖層”結構,煤柱下上覆巖層形成“拱—傳遞巖梁結構”。(2)采空區(qū)下和煤柱下來壓步距差別不大;受到提前卸壓處理的影響,煤柱下初次來壓動載系數為1.51,比較大;受煤柱集中應力的影響,煤柱下非來壓期間支架載荷較大,是采空區(qū)下支架載荷的120%,采空區(qū)下周期來壓動載系數是煤柱下的118%。(3)理論估算法和實測法所得支架工作阻力相差不大。采空區(qū)下和煤柱下理論計算的支架工作阻力最大,分別為14822KN、14800KN,相差很小,與實際觀測符合。理論計算法、最大載荷法和均方差法總平均值為13078KN,可知,液壓支架ZFY10200/25/42D額定工作阻力無法滿足實際生產需要的額定工作阻力。(4)工作面支架安全閥經常開啟、煤壁片幫嚴重,架前煤層易冒落、支架頂梁接頂不充分、支架頂梁大幅度的低頭,由此可知,ZFY10200/25/42D無法滿足工作面安全、高效生產的要求。對比二柱式、四柱式放頂煤支架的優(yōu)缺點,推薦使用額定工作阻力不小于15000 KN的四柱式綜放支撐掩護式液壓支架。
[Abstract]:The near-distance coal seam is widespread and widely distributed in our country. Most coal mines in our country use longwall and downlink mining methods, and use all the caving method to manage roof, which has caused many problems of mining near coal seam under goaf, and has also been paid more and more attention by people. Due to the thickness of coal seam is very large, the range of surrounding rock activity is obviously increased compared with ordinary mining height. After the top coal mining, the strata which are easy to collapse can not be filled with goaf in a short time. In this case, the traditional basic roof can not form a stable "masonry beam" structure, which can be transformed into a direct top rock layer, forming a structure similar to "cantilever beam". The integrity and strength of the overlying strata and the interstory roof have been damaged in the mining of the upper coal seam, and the stress of the surrounding rock will be affected by the secondary mining during the mining of the lower coal seam, which will cause a series of new mine pressure phenomena. For example, the face is more prone to roof leakage and pressure frame accident. Affected by the stress concentration of the vertical pillar left over from the upper coal seam, the space support load under the coal pillar is usually very large, the coal face wall cover is serious, the support is prone to bow down, damage and pressure frame, etc., the surrounding rock is more difficult to control. In this paper, I031001 fully mechanized caving face of 10 # coal seam in Yuquan coal mine is studied, and the structural characteristics of overlying strata under goaf and coal pillar and the law of mine pressure appearance are analyzed. The results show that according to the overburden condition and mining method of coal seam, the overlying strata are broken, caved down and stable during coal seam mining. It is concluded that the overlying strata under the goaf form the structure of "the crack zone of the rock layer in the caving zone of the basic top rock layer of the direct top rock formation of the top coal". Under the coal pillar overburden formation "arch-transfer rock beam structure". 2) the gap between the goaf and the coal pillar is not different from that of the coal pillar, and the initial dynamic loading coefficient under the pillar is 1.51, which is influenced by the pressure-relief treatment, and is affected by the concentration stress of the coal pillar. The support load under the coal pillar is larger than that under the coal pillar during the non-pressure period, which is 120 of the support load under the goaf, and the coefficient of dynamic load under the next period of the goaf is the 118.1% under the coal pillar) the working resistance of the support obtained by the theoretical estimation method and the actual measurement method is not different from that obtained by the actual measurement method. The working resistance calculated under goaf and coal pillar is 14822KN / 14800KN respectively, which is in good agreement with the actual observation. The theoretical calculation method, the maximum load method and the mean square error method are 13078KNs. It can be seen that the ZFY10200/25/42D rated working resistance of the hydraulic support cannot meet the rated working resistance of practical production.) the safety valve of the support in the working face is often opened, and the coal wall flake is serious. The coal seam in front of the frame is easy to fall, the top beam of the support is not fully connected, and the top beam of the support is lowered by a large margin. Therefore, it can not meet the requirements of safe and efficient production of the working face by ZFY 10200 / 25 / 42D. Compared with the advantages and disadvantages of two-column and four-pillar caving coal caving support, it is recommended to use four-pillar fully mechanized caving support cover hydraulic support with rated working resistance of not less than 15000 KN.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD323
【參考文獻】
相關期刊論文 前10條
1 李龍清;折智;肖江;趙志良;李雪偉;張杰;;近距離采空區(qū)下特厚煤層綜放開采可行性研究[J];煤炭工程;2015年06期
2 李化敏;蔣東杰;李東印;;特厚煤層大采高綜放工作面礦壓及頂板破斷特征[J];煤炭學報;2014年10期
3 孔憲法;楊永康;康天合;柴肇云;郭俊慶;郭帥;;采空區(qū)下近距離煤層工作面支架支護強度確定[J];礦業(yè)研究與開發(fā);2013年06期
4 李志剛;高圣元;李春睿;;近距離煤層采空區(qū)下片幫冒頂控制技術[J];煤礦開采;2013年04期
5 鞠金峰;許家林;朱衛(wèi)兵;王路軍;;神東礦區(qū)近距離煤層出一側采空煤柱壓架機制[J];巖石力學與工程學報;2013年07期
6 郭帥;孔憲法;康天合;王成帥;;采空區(qū)下近距離煤層綜采工作面支架載荷分析[J];煤礦安全;2013年05期
7 秦波濤;魯義;殷少舉;曹凱;王美光;;近距離煤層綜放面瓦斯與煤自燃復合災害防治技術研究[J];采礦與安全工程學報;2013年02期
8 胡金鑒;周廣飛;武曉明;楊科;;近距離采空區(qū)下大采高綜采面礦壓演化規(guī)律研究[J];煤炭工程;2012年08期
9 于雷;閆少宏;劉全明;;特厚煤層綜放開采支架工作阻力的確定[J];煤炭學報;2012年05期
10 許家林;朱衛(wèi)兵;王曉振;張志強;;溝谷地形對淺埋煤層開采礦壓顯現的影響機理[J];煤炭學報;2012年02期
相關博士學位論文 前2條
1 鞠金峰;淺埋近距離煤層出煤柱開采壓架機理及防治研究[D];中國礦業(yè)大學;2013年
2 張百勝;極近距離煤層開采圍巖控制理論及技術研究[D];太原理工大學;2008年
相關碩士學位論文 前2條
1 張世武;極近距離煤層開采巷道支護技術研究[D];太原理工大學;2016年
2 田小龍;近距離煤層群自燃火災防治技術的研究與應用[D];太原理工大學;2006年
,本文編號:1939053
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1939053.html