脆性巖石抗拉特性及其破裂機(jī)制的試驗(yàn)與細(xì)觀模擬研究
本文選題:脆性巖石破裂機(jī)制 + FJM3D模型; 參考:《北京科技大學(xué)》2017年博士論文
【摘要】:脆性巖石破裂機(jī)制研究是深部巖石工程的基礎(chǔ)科學(xué)問題。常見的脆性巖石破壞形式包括剝落、沖擊地壓、巖爆等,其危害輕則影響工程施工進(jìn)度安排,重則造成設(shè)備人員傷亡重大損失,甚至可能會(huì)誘發(fā)工程失效,事關(guān)國(guó)家安全和國(guó)計(jì)民生。傳統(tǒng)的試驗(yàn)方法不能探索脆性巖石內(nèi)部破壞過程,強(qiáng)度準(zhǔn)則不能有效解釋脆性巖石破壞現(xiàn)象,經(jīng)典離散元細(xì)觀模型在分析脆性巖石破裂機(jī)制上存在一些顯著缺陷。諸多的室內(nèi)試驗(yàn)和現(xiàn)場(chǎng)原位試驗(yàn)表明,脆性巖石破壞中細(xì)觀張拉裂紋扮演著主導(dǎo)角色。本文從室內(nèi)試驗(yàn)及細(xì)觀分析角度,研究脆性巖石抗拉特性,首先選取合適的細(xì)觀模型,其次結(jié)合室內(nèi)試驗(yàn)結(jié)果,分別就脆性巖石的三大特征、巴西抗拉強(qiáng)度和I型斷裂韌度進(jìn)行深入分析,探究了脆性巖石細(xì)觀張拉破裂機(jī)制。主要研究工作和研究成果如下:(1)完整脆性巖石的室內(nèi)試驗(yàn)結(jié)果呈現(xiàn)三大顯著特征:高壓拉比、大內(nèi)摩擦角和強(qiáng)度包絡(luò)線非線性,而經(jīng)典黏結(jié)顆粒細(xì)觀模型(Bonded-particle model)—標(biāo)準(zhǔn)BPM在匹配脆性巖石宏觀力學(xué)性質(zhì)時(shí)存在這三個(gè)顯著缺陷。通過分析標(biāo)準(zhǔn)BPM的組成和本構(gòu)關(guān)系以及標(biāo)準(zhǔn)BPM改進(jìn)模型的特點(diǎn),總結(jié)了造成這些顯著缺陷的原因,提出采用新的黏結(jié)細(xì)觀模型—平節(jié)理模型(3D flat-joint model, FJM3D)開展脆性巖石研究。(2)根據(jù)錦屏大理巖室內(nèi)壓縮和抗拉試驗(yàn)結(jié)果,結(jié)合FJM3D模型校核過程和參數(shù)敏感性分析結(jié)果,掌握了對(duì)脆性巖石三大特征起決定性作用的細(xì)觀參數(shù),并提出了一套能全面反映脆性巖石宏觀力學(xué)性質(zhì)的校核方法。(3)依據(jù)典型的巴西劈裂試驗(yàn)和Brisbane凝灰?guī)r室內(nèi)試驗(yàn)結(jié)果,借鑒多邊形近似求圓周長(zhǎng)的思想,提出采用FJM3D模型直接生成巴西圓盤細(xì)觀模型,通過圓周分辨率控制圓周光滑度,解決了標(biāo)準(zhǔn)BPM存在的缺陷和傳統(tǒng)圓盤建模方法造成的問題,通過參數(shù)敏感性分析掌握了影響巴西抗拉強(qiáng)度(BTS)的關(guān)鍵細(xì)觀參數(shù)。(4)通過花崗巖人字形切槽巴西圓盤(Crack chevron notched Brazilian disc, CCNBD)試驗(yàn),得出了試樣尺寸和加載速率對(duì)Ⅰ型斷裂韌度(K_(Ic))的影響規(guī)律。采用FJM3D模型和光滑節(jié)理模型(Smooth joint model, SJM)共同構(gòu)建了CCNBD細(xì)觀模型,結(jié)合矩張量理論,獲得了該花崗巖聲發(fā)射b值約為1.7242和聲發(fā)射事件的頻數(shù)與所包含的裂紋個(gè)數(shù)之間的關(guān)系。擬合多組細(xì)觀模型計(jì)算結(jié)果,得出了K_(Ic)與黏結(jié)抗拉強(qiáng)度σ_b呈線性正相關(guān),與晶粒直徑平方根(Davg)~(1/2)呈指數(shù)正相關(guān),與晶粒尺寸非均勻性平方根(dmax/dmin)~(1/2)呈指數(shù)負(fù)相關(guān)。(5)查閱國(guó)內(nèi)外大量可獲得的脆性巖石資料,理論上定性分析了抗拉強(qiáng)度(TS)、啟裂應(yīng)力(CI)和Ⅰ型斷裂韌度(K_(Ic))三個(gè)屬性之間的內(nèi)在聯(lián)系,并統(tǒng)計(jì)了三者之間的定量關(guān)系:TS與Cl的線性系數(shù)約等于0.075,K_(Ic)與TS的線性系數(shù)在0.1~0.15之間。這些線性關(guān)系的相關(guān)系數(shù)不高,建議每種屬性采用一種試驗(yàn)方法獲取,使結(jié)果更可靠,統(tǒng)計(jì)更多組試驗(yàn)數(shù)據(jù),修正經(jīng)驗(yàn)公式,為指導(dǎo)同類脆性巖石工程設(shè)計(jì)、評(píng)價(jià)奠定基礎(chǔ)。
[Abstract]:The study on the fracture mechanism of brittle rocks is the basic scientific problem of deep rock engineering. The common forms of brittle rock failure include peeling, rockburst, rock burst and so on. The light damage affects the construction schedule of the engineering. The heavy losses of the casualties are caused by the heavy casualties, and the engineering failure may be induced, which concerns the national security and the national economy and the people's livelihood. The traditional test method can not explore the internal failure process of brittle rock, and the strength criterion can not effectively explain the failure of brittle rock. The classical discrete element meso model has some significant defects in the analysis of the fracture mechanism of brittle rocks. Many indoor tests and in-situ tests show that the meso tensile crack in brittle rock failure is made up. In this paper, the tensile properties of brittle rocks are studied from the angle of indoor test and meso analysis. First, a suitable meso model is selected. Secondly, the three characteristics of brittle rocks, the tensile strength of Brazil and the fracture toughness of I type, are analyzed in detail, and the mechanism of the tensile fracture of brittle rocks is investigated. The main research work and research results are as follows: (1) indoor test results of intact brittle rocks show three significant characteristics: high pressure Rabi, large internal friction angle and strength envelope nonlinear, and classical cohesive particle meso model (Bonded-particle model) - standard BPM exists these three remarkable properties in the macroscopic mechanical properties of brittle rock. Defects. By analyzing the composition and constitutive relation of the standard BPM and the characteristics of the standard BPM improved model, the reasons for these significant defects were summarized, and a new adhesive meso model (3D flat-joint model, FJM3D) was used to study the brittle rock. (2) according to the results of compression and tensile tests in Jinping marble chamber, Combining the FJM3D model checking process and the parameter sensitivity analysis results, the mesoscopic parameters that play a decisive role in the three characteristics of brittle rocks are mastered, and a set of checking methods that can comprehensively reflect the macroscopic mechanical properties of brittle rocks is proposed. (3) based on the typical Brazil splitting test and the results of the Brisbane tuff laboratory test, the polygon is used for reference. In order to approximate the circle circumference, the FJM3D model is used to generate the Brazil disc meso model directly, and the circumference resolution is used to control the circumference smoothness. The defects of the standard BPM and the problems caused by the traditional disk modeling method are solved. The key parameters of the tensile strength of the disk (BTS) are controlled by the parameter sensitivity analysis. (4) The effect of specimen size and loading rate on type I fracture toughness (K_ (Ic)) was obtained through the test of Crack chevron notched Brazilian disc (CCNBD) in the granite human shaped slot (Crack Brazilian disc, CCNBD). The microscopic model was constructed by using the FJM3D model and the smooth joint model (Smooth joint model). The relationship between the b value of the acoustic emission of the granite is about 1.7242 and the frequency of the acoustic emission events and the number of the number of cracks contained. The results show that K_ (Ic) has a linear positive correlation with the adhesive tensile strength Sigma _b, and is positively correlated with the square root of grain diameter (Davg) ~ (1/2), and the square root of the grain size (d). Max/dmin) ~ (1/2) has an exponential negative correlation. (5) looking up a large number of available brittle rock data at home and abroad, the intrinsic relationship between the tensile strength (TS), the crack initiation stress (CI) and the type I fracture toughness (K_ (Ic)) is qualitatively analyzed, and the quantitative relationship between the three ones is statistically analyzed: the linear coefficient between the TS and Cl is equal to 0.075, K_ (Ic) and TS. The linear coefficient is between 0.1 and 0.15. The correlation coefficient of these linear relationships is not high. It is suggested that each attribute is obtained by a test method to make the result more reliable, to count more experimental data and to modify the empirical formula, and to lay a foundation for guiding the design of similar brittle rock engineering and evaluation.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TD315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 E.Hoek;C.D.Martin;;Fracture initiation and propagation in intact rock—A review[J];Journal of Rock Mechanics and Geotechnical Engineering;2014年04期
2 周輝;楊艷霜;肖海斌;張傳慶;付亞平;;硬脆性大理巖單軸抗拉強(qiáng)度特性的加載速率效應(yīng)研究——試驗(yàn)特征與機(jī)制[J];巖石力學(xué)與工程學(xué)報(bào);2013年09期
3 周喻;吳順川;許學(xué)良;孫偉;張曉平;;巖石破裂過程中聲發(fā)射特性的顆粒流分析[J];巖石力學(xué)與工程學(xué)報(bào);2013年05期
4 楊艷;常曉林;周偉;周創(chuàng)兵;;裂隙巖體水力劈裂的顆粒離散元數(shù)值模擬[J];四川大學(xué)學(xué)報(bào)(工程科學(xué)版);2012年05期
5 鄧華鋒;李建林;朱敏;王瑞紅;原先凡;羅騫;;圓盤厚徑比對(duì)巖石劈裂抗拉強(qiáng)度影響的試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2012年04期
6 ;國(guó)家安全監(jiān)管總局 國(guó)家煤礦安監(jiān)局關(guān)于河南省義馬煤業(yè)集團(tuán)千秋煤礦“11·3”重大沖擊地壓事故的通報(bào)[J];國(guó)家安全生產(chǎn)監(jiān)督管理總局國(guó)家煤礦安全監(jiān)察局公告;2011年12期
7 張春生;陳祥榮;侯靖;褚衛(wèi)江;;錦屏二級(jí)水電站深埋大理巖力學(xué)特性研究[J];巖石力學(xué)與工程學(xué)報(bào);2010年10期
8 崔振東;劉大安;安光明;周苗;李志清;;V形切槽巴西圓盤法測(cè)定巖石斷裂韌度K_(IC)的實(shí)驗(yàn)研究[J];巖土力學(xué);2010年09期
9 滿軻;周宏偉;;不同賦存深度巖石的動(dòng)態(tài)斷裂韌性與拉伸強(qiáng)度研究[J];巖石力學(xué)與工程學(xué)報(bào);2010年08期
10 李庶林;唐海燕;;不同加載條件下巖石材料破裂過程的聲發(fā)射特性研究[J];巖土工程學(xué)報(bào);2010年01期
相關(guān)博士學(xué)位論文 前1條
1 王建良;深埋大理巖力學(xué)特性研究及其工程應(yīng)用[D];昆明理工大學(xué);2013年
,本文編號(hào):1931975
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1931975.html