薄煤層掘進工作面氣幕控塵技術(shù)研究
本文選題:薄煤層 + 掘進工作面; 參考:《中國礦業(yè)大學》2017年碩士論文
【摘要】:薄煤層掘進工作面作業(yè)空間狹小和施工進度快的特點,加重了粉塵聚集和粉塵濃度超限。本文以-290m掘進工作面工況條件為基礎(chǔ),研究了氣幕控塵技術(shù)改善巷道粉塵濃度超標問題。通過理論分析,得出粉塵向巷道后方運移的主要動力是風流的運動。掘進工作面風流包括射流區(qū)、順流區(qū)、渦流區(qū)、逆轉(zhuǎn)區(qū),最有利的通風方式為“U”形附壁層流。利用Fluent建立氣-固兩相流模型,得出供風量增大到250m~3/min時,風流射流區(qū)長度和風筒出風口距迎頭面的長度相近,粉塵分布區(qū)域減小。當Lf=6m時,司機位置處所受擾動風速減小,回風流攜帶粉塵對其影響較小。同時,截割頭擾動風速的增大,也會加大粉塵向掘進機方向運移的距離,增大掘進機扒裝煤巖作業(yè)的逸塵擴散范圍。掘進機產(chǎn)塵量的增大,直接引起巷道平均粉塵濃度增大。且截割頭產(chǎn)塵量J超過120mg/s時,掘進機司機位置和后端行人作業(yè)區(qū)的呼吸性粉塵的濃度均嚴重超出國家規(guī)定安全作業(yè)環(huán)境值。氣幕開啟后形成沖擊射流,包含自由射流區(qū)、射流沖擊區(qū)和附壁射流區(qū),分析氣幕出風口寬度與氣幕卷吸風量的變化關(guān)系,可通過選擇較小出風口寬度,提高煤層掘進工作面氣幕出風口風速來實現(xiàn)氣幕卷吸風量的要求。當出口風速Vq=7.0m/s時,掘進機司機位置處粉塵濃度較低。后端行人作業(yè)區(qū)X1整體大于后端行人作業(yè)區(qū)X2的粉塵濃度,表明粉塵高濃度區(qū)域被控制在回風側(cè)巷幫附近,氣幕控制效率最高。單獨增大回風側(cè)導流氣幕風機的長度會降低掘進機司機位置和后端行人作業(yè)區(qū)的粉塵濃度。當回風側(cè)導流氣幕風機長度LFz2=3m時,掘進面氣幕控制效果明顯。對比氣幕開啟前后,掘進機司機位置處粉塵濃度下降76.92%,降為3.597mg/m~3,達到國家規(guī)定的安全作業(yè)限值。以礦井濕式除塵實驗平臺為基礎(chǔ)進行試驗研究得出:氣幕出風口寬度、風速及傾角分別為0.02m、7m/s、10°時,氣幕控塵效率最高達到82.3%,與理論分析和數(shù)值模擬結(jié)果相吻合。
[Abstract]:The characteristics of narrow working space and fast construction progress in thin coal seam driving face aggravate dust accumulation and dust concentration exceeding limit. Based on the working conditions of -290m tunneling face, this paper studies the improvement of dust concentration in roadway by air curtain control technology. Through theoretical analysis, it is concluded that the main driving force of dust moving to the rear of roadway is the movement of wind and flow. The wind flow in tunneling face includes jet zone, downstream area, eddy current area and reverse zone. The most favorable ventilation mode is "U" type wall attached laminar flow. The gas-solid two-phase flow model is established by using Fluent. When the air supply volume increases to 250m~3/min, the length of the air-flow jet zone and the length of the tuyere outlet from the head to the head are similar, and the dust distribution region decreases. When Lf=6m, the disturbance wind speed at the driver's position decreases, and the dust carried by the return air flow has little effect on it. At the same time, the increase of cutting head disturbance wind speed will also increase the distance of dust moving to the roadheader, and increase the dust diffusion range of roadheader bagging coal and rock operation. The increase of dust production of roadheader directly results in the increase of average dust concentration in roadway. When the dust yield of cutting head exceeds 120mg/s, the concentration of respiratory dust in the roadheader driver's position and in the rear pedestrian operation area is seriously higher than the value of safe working environment stipulated by the state. An impinging jet is formed after the opening of the air curtain, including the free jet zone, the jet impingement zone and the wall attached jet zone. The relationship between the air curtain outlet width and the air volume of the air curtain entrainment can be analyzed by selecting the smaller air outlet width. To improve the wind speed of air curtain outlet in coal seam driving face to meet the demand of air curtain entrainment. When the outlet wind speed is Vq=7.0m/s, the dust concentration at the driver's position of the roadheader is lower. The dust concentration of the back-end pedestrian area X1 is larger than that of the back-end pedestrian area X2, which indicates that the dust concentration area is controlled near the backwind side lane, and the air curtain control efficiency is the highest. Increasing the length of the air curtain on the backwind side alone will reduce the dust concentration in the roadheader driver's position and the back-end pedestrian operation area. When the length of air curtain is LFz2=3m, the control effect of air curtain is obvious. Compared with before and after the opening of the air curtain, the dust concentration at the driver's position of the roadheader dropped 76.92% to 3.597mg / mm3, which reached the limit of safety operation stipulated by the state. Based on the experimental platform of wet dust removal in coal mine, it is concluded that when the width of air curtain outlet, wind speed and inclination angle are 0.02 m / s / s 10 擄respectively, the maximum dust control efficiency of air curtain reaches 82.3%, which is consistent with the theoretical analysis and numerical simulation results.
【學位授予單位】:中國礦業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD714.4
【參考文獻】
相關(guān)期刊論文 前10條
1 謝克昌;;“烏金”產(chǎn)業(yè) 綠色轉(zhuǎn)型[J];中國煤炭工業(yè);2016年02期
2 韓建國;;能源結(jié)構(gòu)調(diào)整“軟著陸”的路徑探析——發(fā)展煤炭清潔利用、破解能源困局、踐行能源革命[J];管理世界;2016年02期
3 鄒才能;趙群;張國生;熊波;;能源革命:從化石能源到新能源[J];天然氣工業(yè);2016年01期
4 張云起;馮漪;;供給側(cè)經(jīng)濟改革中化解產(chǎn)能過剩的路徑分析[J];商業(yè)文化;2016年01期
5 王偉黎;;礦用濕式除塵器噴霧結(jié)構(gòu)分析及優(yōu)化研究[J];煤礦機械;2015年12期
6 馬尚權(quán);吳姍姍;;中美煤礦塵肺病控制現(xiàn)狀對比[J];華北科技學院學報;2015年05期
7 覃道雄;;新常態(tài)下深化國有煤炭企業(yè)改革的思考[J];中國煤炭工業(yè);2015年09期
8 尚積軍;司衛(wèi)彬;曹黎銘;曹凱;;綜掘工作面泡沫抑塵技術(shù)實踐[J];煤礦開采;2015年04期
9 李順峰;;基于附壁風筒聯(lián)合濕式除塵器的綜掘工作面粉塵控制技術(shù)[J];煤礦安全;2015年06期
10 鄭磊;王偉黎;;礦用濕式過濾除塵器不同阻力情況下性能實驗研究[J];煤礦機械;2015年04期
相關(guān)會議論文 前1條
1 劉榮華;王海橋;劉河清;施式亮;;綜采工作面空氣幕隔塵理論研究[A];全國暖通空調(diào)制冷2002年學術(shù)年會論文集[C];2002年
相關(guān)博士學位論文 前5條
1 邢萬里;2030年我國新能源發(fā)展優(yōu)先序列研究[D];中國地質(zhì)大學(北京);2015年
2 張海龍;中國新能源發(fā)展研究[D];吉林大學;2014年
3 李艷強;綜掘工作面分風降塵理論及應(yīng)用研究[D];中國礦業(yè)大學(北京);2013年
4 劉榮華;綜采工作面隔塵理論及應(yīng)用研究[D];中南大學;2010年
5 王海寧;礦用空氣幕理論及其應(yīng)用研究[D];中南大學;2005年
相關(guān)碩士學位論文 前6條
1 王帥;薄煤層綜采工作面氣幕隔塵技術(shù)研究[D];中國礦業(yè)大學;2015年
2 劉偉;綜掘工作面高效除塵技術(shù)及工藝研究與實踐[D];山東科技大學;2010年
3 李剛;高效水霧降塵技術(shù)的實驗研究及工程應(yīng)用[D];湖南科技大學;2009年
4 吳百劍;綜采工作面粉塵分布規(guī)律研究[D];煤炭科學研究總院;2008年
5 陳卓楷;超聲霧化水霧的除塵機理和在實驗中的應(yīng)用研究[D];廣東工業(yè)大學;2007年
6 余國華;礦山安全生產(chǎn)監(jiān)管對策研究[D];浙江大學;2006年
,本文編號:1886615
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1886615.html