探地雷達(dá)在采煤工作面上保護(hù)層檢測中的應(yīng)用
本文選題:探地雷達(dá) + 上保護(hù)層厚度檢測 ; 參考:《西安科技大學(xué)》2016年碩士論文
【摘要】:智能化煤礦綜采工作面要求采煤機(jī)在工作時(shí)能夠根據(jù)開采環(huán)境自動(dòng)調(diào)節(jié)滾筒的高度,而滾筒高度的自動(dòng)調(diào)節(jié)首先需要進(jìn)行上保護(hù)層厚度檢測和煤巖界面識別,因此采煤工作面上保護(hù)層檢測對于智能機(jī)械化采煤具有重要意義。論文分析了主流煤巖界面探測技術(shù)的特點(diǎn),總結(jié)出探地雷達(dá)最適于留煤厚型開采方式的煤巖界面識別。在研究了煤層中探地雷達(dá)信號損耗特性的基礎(chǔ)上,仿真分析了煤層中電磁波相速度、衰減系數(shù)與頻率的關(guān)系,為探地雷達(dá)應(yīng)用于煤層探測時(shí)中心頻率的選擇以及相速度、路徑損耗計(jì)算方法的選擇提供依據(jù)。根據(jù)采煤工作面中的信號特征,建立了上保護(hù)層探測模型,研究了采煤機(jī)附近混合氣體介電常數(shù)以及衰減常數(shù)的計(jì)算方法,利用電磁波在探測上保護(hù)煤層時(shí)的路徑損耗以及在介質(zhì)分界面上的反射特性得到了基于電波損耗特性的保護(hù)煤層厚度計(jì)算方法并提出了一種上保護(hù)層覆巖識別算法。對采煤工作面中不同情形下的覆巖識別進(jìn)行了仿真分析,仿真結(jié)果表明了算法的有效性以及采煤機(jī)附近混合氣體介電特性研究的必要性。為了提高采煤工作面探地雷達(dá)回波數(shù)據(jù)的解釋準(zhǔn)確度,采用時(shí)域有限差分方法(FDTD)進(jìn)行了探地雷達(dá)正演模擬,并以二維FDTD仿真為例,對不同層厚的完全匹配層(PML)吸收邊界條件的吸收效果進(jìn)行了仿真分析,為FDTD算法進(jìn)行正演仿真時(shí)吸收邊界條件的設(shè)置奠定基礎(chǔ)。分別實(shí)現(xiàn)了探地雷達(dá)在上保護(hù)煤層中的厚度檢測、簡單地質(zhì)構(gòu)造、煤層中的異常水體和空洞、褶皺煤層以及煤層中常見的破碎帶、富水破碎帶問題的正演模擬,總結(jié)出了各自的探地雷達(dá)剖面圖特征,為煤層中實(shí)際探測目標(biāo)體的識別和探地雷達(dá)成像資料的研究提供了依據(jù)。
[Abstract]:The intelligent fully mechanized coal mining face requires that the shearer can automatically adjust the height of the roller according to the mining environment, and the automatic adjustment of the height of the roller requires the detection of the thickness of the upper protective layer and the identification of the coal and rock interface. Therefore, it is important for intelligent mechanized coal mining to detect the protective layer on the mining face. This paper analyzes the characteristics of the mainstream coal-rock interface detection technology, and concludes that GPR is most suitable for coal-rock interface recognition. On the basis of studying the characteristics of signal loss of ground penetrating radar in coal seam, the relationship among phase velocity, attenuation coefficient and frequency of electromagnetic wave in coal seam is simulated and analyzed. In order to select the center frequency and phase velocity when ground penetrating radar is used in coal seam detection, The selection of path loss calculation method provides the basis. According to the signal characteristics of coal mining face, the detection model of upper protective layer is established, and the calculation method of dielectric constant and attenuation constant of mixed gas near shearer is studied. A method for calculating the thickness of protective coal seam based on the characteristics of electromagnetic wave loss is obtained by using the path loss of electromagnetic wave to protect the coal seam and the reflection characteristics on the dielectric interface, and an algorithm for identifying the overburden of the upper protective layer is proposed. The simulation analysis of overburden recognition in different situations in coal mining face shows the validity of the algorithm and the necessity of studying the dielectric characteristics of mixed gas near the shearer. In order to improve the interpretation accuracy of ground penetrating radar echo data in coal mining face, the forward simulation of ground penetrating radar is carried out by using FDTD (finite difference time domain) method, and the two-dimensional FDTD simulation is taken as an example. The absorption effect of perfectly matched laminar (FDTD) absorbing boundary conditions with different thickness is simulated and analyzed, which lays a foundation for the setting of absorbing boundary conditions in the forward simulation of FDTD algorithm. The forward modeling of the thickness detection of the ground penetrating radar in the upper protective coal seam, the simple geological structure, the abnormal water body and cavity in the coal seam, the folded coal seam and the common broken zone in the coal seam, and the problem of the water-rich broken zone are realized, respectively. The characteristics of their respective GPR profiles are summarized, which provides a basis for the recognition of actual detection objects in coal seam and the study of GPR imaging data.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TD67
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 薛建;梁文婧;劉立家;劉明輝;申文斌;黃茜;楊衛(wèi)明;;探地雷達(dá)低頻天線在工程勘探中的應(yīng)用[J];物探與化探;2015年06期
2 趙地杰;武立飛;;不規(guī)則殘采工作面回采巷道合理布置研究[J];煤炭技術(shù);2015年12期
3 李亮;王昕;胡克想;趙端;丁恩杰;;探地雷達(dá)探測煤巖界面的方法與試驗(yàn)[J];工礦自動(dòng)化;2015年09期
4 張新;王正祥;武晨光;王磊;;煤巖界面識別技術(shù)研究[J];煤礦機(jī)械;2015年02期
5 符大利;袁建平;;黃陵礦業(yè)首套薄煤層國產(chǎn)裝備采場無人化綜采工作面的設(shè)備選型[J];中國高新技術(shù)企業(yè);2014年27期
6 武彥斌;崔凡;王磊;陳佳;李媛媛;;透射式探地雷達(dá)探測土壤含水率[J];農(nóng)業(yè)工程學(xué)報(bào);2014年17期
7 梁慶華;吳燕清;宋勁;黃暉;朱昌淮;孫興平;;探地雷達(dá)在煤巷掘進(jìn)中超前探測試驗(yàn)研究[J];煤炭科學(xué)技術(shù);2014年05期
8 齊高臣;李鵬;王彥敏;;綜采工作面初采過斷層頂板控制技術(shù)[J];煤炭科學(xué)技術(shù);2014年S1期
9 趙恩彪;;采煤工作面粉塵濃度分布及傳感器的部署[J];中國安全生產(chǎn)科學(xué)技術(shù);2012年11期
10 趙靜;;巷道中電磁波傳播衰減影響因素研究[J];煤礦機(jī)電;2010年04期
,本文編號:1884109
本文鏈接:http://sikaile.net/kejilunwen/kuangye/1884109.html